残差神经网络与inception-resnet
一、基本概念
Residual Connection:
- 本质是“短路连接”
- 如下图阴影部分,通过增加shortcuts,加速训练,从而可以训练出更深的模型(I.R.v2 > Inception v3)。更深的模型意味着可以学出更多东西,带来精度的提升。

I.R. v2结构,注意到图中inception区块被简化了,比先前的Inception V3种要包含更少的并行塔(parallel towers)。
Inception模块的特点,是通过这种并联结构减少参数,使得泛化性更好、降低对样本数量的要求。
实现
通过将并联部分与“短路连接”的tensors相加(或加权相加),并经过一个‘relu’激活函数。
x = layers.add([mix0, shortcut])
x = layers.Activation('relu')(x)
二、论文
为了进一步推进这个领域的进步,今天Google团队宣布发布Inception-ResNet-v2(一种卷积神经网络——CNN),它在ILSVRC图像分类基准测试中实现了当下最好的成绩。Inception-ResNet-v2是早期Inception V3模型变化而来,从微软的残差网络(ResNet)论文中得到了一些灵感。相关论文信息可以参看我们的论文Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning(Inception-v4, Inception-ResNet以及残差连接在学习上的影响):

残差连接(Residual connections )允许模型中存在shortcuts,可以让研究学者成功地训练更深的神经网络(能够获得更好的表现),这样也能明显地简化Inception块。
效果
如下方图表所示,Inception-ResNet-v2架构的精确度比之前的最优模型更高,图表中所示为基于单个图像的ILSVRC 2012图像分类标准得出的排行第一与排行第五的有效精确度。此外,该新模型仅仅要求两倍于Inception v3的容量与计算能力。

Inception-ResNet-v2具体代码实现过程参见:
https://github.com/tensorflow/models/blob/master/slim/nets/inception_resnet_v2.py
残差神经网络与inception-resnet的更多相关文章
- 深度神经网络Google Inception Net-V3结构图
深度神经网络Google Inception Net-V3结构图 前言 Google Inception Net在2014年的 ImageNet Large Scale Visual Recognit ...
- inception - resnet
只有reduction-A是共用的,只是改了其中的几个参数 linear是线性激活. 结构是一样的
- ResNet学习笔记
ResNet学习笔记 前言 这篇文章实在看完很多博客之后写的,需要读者至少拥有一定的CNN知识,当然我也不知道需要读者有什么水平,所以可能对一些很入门的基本的术语进行部分的解释,也有可能很多复杂的术语 ...
- 深度学习——卷积神经网络 的经典网络(LeNet-5、AlexNet、ZFNet、VGG-16、GoogLeNet、ResNet)
一.CNN卷积神经网络的经典网络综述 下面图片参照博客:http://blog.csdn.net/cyh_24/article/details/51440344 二.LeNet-5网络 输入尺寸:32 ...
- 跟我学算法-图像识别之图像分类(下)(GoogleNet网络, ResNet残差网络, ResNext网络, CNN设计准则)
1.GoogleNet 网络: Inception V1 - Inception V2 - Inception V3 - Inception V4 1. Inception v1 split - me ...
- 深度残差网络——ResNet学习笔记
深度残差网络—ResNet总结 写于:2019.03.15—大连理工大学 论文名称:Deep Residual Learning for Image Recognition 作者:微软亚洲研究院的何凯 ...
- 残差网络ResNet笔记
发现博客园也可以支持Markdown,就把我之前写的博客搬过来了- 欢迎转载,请注明出处:http://www.cnblogs.com/alanma/p/6877166.html 下面是正文: Dee ...
- 深度残差网络(ResNet)
引言 对于传统的深度学习网络应用来说,网络越深,所能学到的东西越多.当然收敛速度也就越慢,训练时间越长,然而深度到了一定程度之后就会发现越往深学习率越低的情况,甚至在一些场景下,网络层数越深反而降低了 ...
- (转)ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks
ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks by KO ...
随机推荐
- 泥瓦工vps
http://blog.sina.com.cn/s/blog_16a3cb7cb0102xbvd.html
- FFT与一些冷门问题
FFT也能用于一些特殊的字符串匹配与最小化问题. Prob 1 : 给出模式串A与文本串B,两个串中只有26个大写字母与通配符'?'(即可以任意匹配一个字符),求A在B中的匹配数.要求以FFT为例给出 ...
- h5手机点击返回键,刷新页面
在js中,加上一下代码: window.onpageshow = function(event) {if (event.persisted) {window.location.reload();}};
- 内存泄漏 tensorflow
http://blog.csdn.net/qq_25737169/article/details/78125550
- 2.3 利用FTP服务器下载和上传文件
二.利用FTP服务器的下载文件 from ftplib import FTP from os.path import exists def getfile(file,site,dir,user=(), ...
- Python列表的一点用法
#python的基本语法网上已经有很多详细的解释了,写在这里方便自己记忆一些 列表相当于python中的数组,但相对于数组,列表的操作显得更为灵活 常用的操作列表的方式: List = [1,'bl ...
- web 页面上纯js实现按钮倒计数功能(实时计时器也可以)
需求构思:本功能想实现的是,一个按钮在页面载入就显示提醒续费,,,倒数60秒后,完成提醒功能,可以按另外一个页面跳转到主页. 参考网上的大神,实现如下:Button2倒数,Button3跳转,在页面上 ...
- CodeForces - 589A (STL容器的使用)
Polycarp has quite recently learned about email aliases. Of course, he used to suspect that the case ...
- grep、head和tail
一.请给出打印test.txt内容时,不包含oldboy字符串的命令 Linux系统中grep命令是一种强大的文本搜索工具,它能使用正则表达式搜索文本,并把匹 配的行打印出来.grep全称是Globa ...
- 脱产班第五次大作业-FTP服务器
下载项目 my_ftp #!/usr/bin/env python3 # -*- coding: utf-8 -*- import os import hmac import json import ...