python grib气象数据可视化
基于Python的Grib数据可视化
一、库的安装
(一)matplotlib安装
matplotlib依赖
安装过程
这里我都是通过源码包安装的,大家也可以再终端里通过pip install 命令来安装
1、安装nose
解压缩后,进入命令提示符 运行
1 python3 setup.py install
2、安装numpy
解压缩后,进入命令提示符 运行
1 python3 setup.py install
3、安装pyparsing
解压缩后,进入命令提示符 运行
1 python3 setup.py install
4、安装python-dateutil
解压缩后,进入命令提示符 运行
1 python3 setup.py install
5、安装cycler
解压缩后,进入命令提示符 运行
1 python3 setup.py install
6、安装pkg-config
1 ./configure --with-intermal-glib
2 make && date
3 sudo make install && date
7、安装freetype
1 ./configure
2 make && date
3 sudo make install && date
8、安装libpng
1 ./configure
2 make && date
3 sudo make install && date
9、安装matplotlib-1.5.0
解压缩后,进入命令提示符 运行
1 python3 setup.py install
(二)basemap安装
basemap依赖
安装过程
1、安装GEOS
1 ./configure
2 make && date
3 sudo make install && date
2、安装pyproj
1 python3 setup.py install
3、安装basemap
1 python3 setup.py install
(三)pygrib安装
pygrib依赖
安装过程
由于之前已经安装了numpy和pyproj,这里只需安装Jasper和GRIB API即可安装pygrib
1、安装Jasper
1 ./configure
2 make && date
3 sudo make install && date
2、安装GRIB API
1 ./configure --with-jasper='/usr/local/'
2 make && date
3 sudo make install && date
3、安装pygrib
安装pygrib之前首先要根据自己的实际情况修改文件目录下的setup.cfg文件,最主要的就是修改grib_api_dir和jasper_dir,这两个是刚刚安装的Jasper和GRIB API的路径,如果这两个地址不正确安装会报错
修改好就可以正常安装了
1 python3 setup.py install
二、grib数据读取
虽然我做的东西和气象沾边,但是我本身并不是气象专业出身,所有这些东西都是我慢慢研究琢磨出来的,所以有些方面可能讲的比较外行,有不对的地方欢迎大家留言指正。
(一)导入pygrib模块
1 >>> import pygrib
(二)打开Grib文件
1 >>> grbs = pygrib.open('/Users/Kallan/Documents/data/echhae50.082')
(三)提取文件信息
1 >>> grbs.seek(0)
2 >>> for grb in grbs:
3 grb
4 1:Geopotential Height:gpm (instant):regular_ll:isobaricInhPa:level 500:fcst time 24 :from 201507081200
信息解读
1 :数据列表的行号,有的文件可能包括多个数据
Geopotential Height:数据的名称
gpm (instant):数据的单位
regular_ll:常规数据,其实这个字段我也不清楚
isobaricInhPa:这个字段表示的是数据属性,此处表示是以hPa为单位的等压面
level 500:这个字段表示的是高度层
fcst time 24 :预报时效
from 201507081200 :起报时间
综合上面的信息可以得出,这个文件是从2015年7月8日12时开始的24小时后500hPa等压面高度场数据
(四)导出文件数据

1 >>> grb = grbs.select(name='Geopotential Height')[0]
2 >>> data = grb.values
3 >>> print(data.shape,data.min(),data.max())
4 (37, 37) 5368.6796875 5941.0390625
5 >>> lat,lon=grb.latlons()
6 >>> print(lat,'\n',lon)
7 [[ 0. 0. 0. ..., 0. 0. 0. ]
8 [ 2.5 2.5 2.5 ..., 2.5 2.5 2.5]
9 [ 5. 5. 5. ..., 5. 5. 5. ]
10 ...,
11 [ 85. 85. 85. ..., 85. 85. 85. ]
12 [ 87.5 87.5 87.5 ..., 87.5 87.5 87.5]
13 [ 90. 90. 90. ..., 90. 90. 90. ]]
14 [[-90. -87.5 -85. ..., -5. -2.5 0. ]
15 [-90. -87.5 -85. ..., -5. -2.5 0. ]
16 [-90. -87.5 -85. ..., -5. -2.5 0. ]
17 ...,
18 [-90. -87.5 -85. ..., -5. -2.5 0. ]
19 [-90. -87.5 -85. ..., -5. -2.5 0. ]
20 [-90. -87.5 -85. ..., -5. -2.5 0. ]]

三、grib数据可视化
(一)导入需要的模块
1 >>> import matplotlib.pyplot as plt
2 >>> from mpl_toolkits.basemap import Basemap
3 >>> import numpy as np
(二)创建一个figure
1 >>> plt.figure()
2 <matplotlib.figure.Figure object at 0x107e65198>
(三)创建一个basemap实例

1 >>> m=Basemap(projection='mill',lat_ts=10,llcrnrlon=lon.min(), \
2 urcrnrlon=lon.max(),llcrnrlat=lat.min(),urcrnrlat=lat.max(), \
3 resolution='c')
4 >>> m.drawcoastlines(linewidth=0.25)
5 <matplotlib.collections.LineCollection object at 0x1091c1f28>
6 >>> m.drawcountries(linewidth=0.25)
7 <matplotlib.collections.LineCollection object at 0x10621d0f0>
8 >>> m.fillcontinents(color='coral',lake_color='aqua')
9 >>> m.drawmapboundary(fill_color='aqua')
10 <matplotlib.patches.Rectangle object at 0x10918b3c8>
11 >>> m.drawmeridians(np.arange(0,360,30))
12 >>> m.drawparallels(np.arange(-90,90,30))

(四)将lat,lon的数据格式转换成投影需要的格式存入x,y
1 >>> x, y = m(lon,lat)
(五)绘制等值线
1 >>> cs = m.contour(x,y,data,15,linewidths=1.5)
(六)命名并显示图像
1 >>> plt.title('Geopotential Height Contour from Grib')
2 <matplotlib.text.Text object at 0x10918bda0>
3 >>> plt.show()
(七)图像展示
python grib气象数据可视化的更多相关文章
- python 爬虫与数据可视化--python基础知识
摘要:偶然机会接触到python语音,感觉语法简单.功能强大,刚好朋友分享了一个网课<python 爬虫与数据可视化>,于是在工作与闲暇时间学习起来,并做如下课程笔记整理,整体大概分为4个 ...
- python 爬虫与数据可视化--matplotlib模块应用
一.数据分析的目的(利用大数据量数据分析,帮助人们做出战略决策) 二.什么是matplotlib? matplotlib: 最流行的Python底层绘图库,主要做数据可视化图表,名字取材于MATLAB ...
- Python TVTK 标量数据可视化与矢量数据可视化,空间轮廓线可视化
Python数据可视化分为 标量可视化,矢量可视化,轮廓线可视化 标量又称无向量,只有大小没有方向,运算遵循代数运算法则比如质量,密度,温度,体积,时间 矢量又称向量,它是由大小,方向共同确定的量,运 ...
- 使用 jupyter-notebook + python + matplotlib 进行数据可视化
上次用 python 脚本中定期查询数据库,监视订单变化,将时间与处理完成订单的数量进行输入写入日志,虽然省掉了人为定时查看数据库并记录的操作,但是数据不进行分析只是数据,要让数据活起来! 为了方便看 ...
- 在我的新书里,尝试着用股票案例讲述Python爬虫大数据可视化等知识
我的新书,<基于股票大数据分析的Python入门实战>,预计将于2019年底在清华出版社出版. 如果大家对大数据分析有兴趣,又想学习Python,这本书是一本不错的选择.从知识体系上来看, ...
- 从python爬虫以及数据可视化的角度来为大家呈现“227事件”后,肖战粉丝的数据图
前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取t.cn ...
- python 爬虫与数据可视化--数据提取与存储
一.爬虫的定义.爬虫的分类(通用爬虫.聚焦爬虫).爬虫应用场景.爬虫工作原理(最后会发一个完整爬虫代码) 二.http.https的介绍.url的形式.请求方法.响应状态码 url的形式: 请求头: ...
- 吴裕雄--天生自然python数据清洗与数据可视化:MYSQL、MongoDB数据库连接与查询、爬取天猫连衣裙数据保存到MongoDB
本博文使用的数据库是MySQL和MongoDB数据库.安装MySQL可以参照我的这篇博文:https://www.cnblogs.com/tszr/p/12112777.html 其中操作Mysql使 ...
- python 爬虫与数据可视化--爬虫基础知识
一.python中的模块 模块的安装:pip install 模块名 导入模块与函数:import requests . from pymongo import MongoClient json模块的 ...
随机推荐
- SamplesHashtable
using System; using System.Collections; public class SamplesHashtable { public static void Main() { ...
- 剑指Offer 21. 栈的压入、弹出序列 (栈)
题目描述 输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否可能为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如序列1,2,3,4,5是某栈的压入顺序,序列4,5,3,2,1是该压 ...
- 公网定制化yum仓库部署
公网定制化yum仓库部署 (1)搭建公网源yum仓库 安装wget aliyun源 # wget -O /etc/yum.repos.d/epel.repo http://mirrors.aliyun ...
- Python学习笔记第二十七周(Bootstrap)
目录: 全局样式 一.栅格系统 二.表单 三.按钮 四.导航 五.按钮组 六.面板 七.表格 八.分页 九.排版 十.图片 十一.辅助类 十二.响应式工具 组件 内容: 前言: 首先通过https: ...
- 洛谷P1605:迷宫(DFS)
题目背景 迷宫 [问题描述] 给定一个N*M方格的迷宫,迷宫里有T处障碍,障碍处不可通过.给定起点坐标和终点坐标,问: 每个方格最多经过1次,有多少种从起点坐标到终点坐标的方案.在迷宫中移动有上下左右 ...
- 求数组的相邻子数组的最大值(txt文件存储)
package mypackage; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File ...
- Centos7 安装nginx1.14
一丶官网 http://nginx.org/en/download.html 至于安装那个版本首先要看清楚版本代表什么意思 Nginx官网提供了三个类型的版本Mainline version:Main ...
- python------面向对象进阶 异常处理
一. 异常处理 try: pass except KeyError as e : #注3.x用as ,except KeyError, e ,2.x 用逗号. print("No this ...
- ES6语法知识
let/const(常用) let,const用于声明变量,用来替代老语法的var关键字,与var不同的是,let/const会创建一个块级作用域(通俗讲就是一个花括号内是一个新的作用域) 这里外部的 ...
- 重读 谢希仁《计算机网络》3 - 网络层和IP协议
