BZOJ3834[Poi2014]Solar Panels——分块
题目描述
输入
输出
样例输入
3 9 8 8
1 10 11 15
4 7 22 23
2 5 19 24
样例输出
7
2
5
提示
枚举区间内每个数求gcd显然不可做,我们不妨换一种思路,枚举gcd。
那么如何判断区间内是否有这个gcd?
只要(l-1)/gcd<r/gcd就能确定区间内有这个gcd了。
剩下的就是枚举gcd了,因为x/gcd只有√x种取值,所以直接整除分块,每次取块内最后一个就好了。
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n;
int A,B,C,D;
int main()
{
scanf("%d",&n);
while(n--)
{
int ans=0;
scanf("%d%d%d%d",&A,&B,&C,&D);
A--;
C--;
int r;
for(int l=1;l<=B&&l<=D;l=r+1)
{
r=min(B/(B/l),D/(D/l));
if(A/r<B/r&&C/r<D/r)
{
ans=r;
}
}
printf("%d\n",ans);
}
}
BZOJ3834[Poi2014]Solar Panels——分块的更多相关文章
- 【BZOJ3834】[Poi2014]Solar Panels 分块好题
[BZOJ3834][Poi2014]Solar Panels Description Having decided to invest in renewable energy, Byteasar s ...
- BZOJ3834 [Poi2014]Solar Panels 【数论】
题目链接 BZOJ3834 题解 容易想到对于\(gcd(x,y) = D\),\(d\)的倍数一定存在于两个区间中 换言之 \[\lfloor \frac{a - 1}{D} \rfloor < ...
- BZOJ3834 : [Poi2014]Solar Panels
问题相当于找到一个最大的k满足在$[x_1,x_2]$,$[y_1,y_2]$中都有k的倍数 等价于$\frac{x_2}{k}>\frac{x_1-1}{k}$且$\frac{y_2}{k}& ...
- bzoj 3834 [Poi2014]Solar Panels 数论分块
3834: [Poi2014]Solar Panels Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 367 Solved: 285[Submit] ...
- 【bzoj3834】[Poi2014]Solar Panels 数论
题目描述 Having decided to invest in renewable energy, Byteasar started a solar panels factory. It appea ...
- 【BZOJ】3834: [Poi2014]Solar Panels
http://www.lydsy.com/JudgeOnline/problem.php?id=3834 题意:求$max\{(i,j)\}, smin<=i<=smax, wmin< ...
- [POI2014]Solar Panels
题目大意: $T(T\le1000)$组询问,每次给出$A,B,C,D(A,B,C,D\le10^9)$,求满足$A\le x\le B,C\le y\le D$的最大的$\gcd(x,y)$. 思路 ...
- BZOJ3834:Solar Panels (分块)
题意 询问两个区间[smin,smax],[wmin,smax]中是否存在k的倍数,使得k最大 分析 将其转化成\([\frac{smin-1}k,\frac{smax}k],[\frac{wmin- ...
- Luogu3579 Solar Panels
整除分块枚举... 真的没有想到会这么简单. 要使一个数 \(p\) 满足 条件, 则 存在\(x, y\), \(a<=x \times p<=b\ \&\&\ c< ...
随机推荐
- liunx基础知识
学习Linux系统的重要性应该不用多说,下面我就对Linux的基础知识进行一个全面而又简单的总结.不过建议大家还是装个Linux系统多练习,平时最好只在Linux环境下编程,这样会大有提高. linu ...
- ubuntu (14.04) 卸载 gnome 系统桌面
1.将ubuntu 的图形界面切到命令行界面. 2.卸掉 gnome-shell 的主程序 sudo apt-get remove gnome-shell 3.卸载 gnome sudo apt-ge ...
- MIPI接口资料汇总(精)
一.介绍 1.MIPI联盟,即移动产业处理器接口(Mobile Industry Processor Interface 简称MIPI)联盟.MIPI(移动产业处理器接口)是MIPI联盟发起的为移动应 ...
- IIR数字滤波器的实现(C语言)
经典滤波器和数字滤波器 一般滤波器可以分为经典滤波器和数字滤波器. 经典滤波器:假定输入信号中的有用成分和希望去除的成分各自占有不同的频带.如果信号和噪声的频谱相互重迭,经典滤波器无能为力.比如 FI ...
- 转 edtools
1.下载工具包:edtools.rar ,解压后放到磁盘的何意一个目录,如D:\edTools. 2.打开ED,打开“工具”-“配置用户工具”,在弹出的对象框中,在“组和工具项目”下拉框中选择一个工 ...
- python第二周。2019.4.13
1, 我绘制大蟒蛇就是..保存也对着呢,你要是打开文件的话,先闪个黑屏,再闪个白屏..自动退出,然后啥都没了. 我觉得是我代码编错了...再来一遍! 这次到可以,但是这个大蟒蛇好像没有回头... 刚才 ...
- 分布式监控系统Zabbix-图形集中展示插件Graphtree安装笔记
Zabbix想要集中展示图像,唯一的选择是screen,后来zatree解决了screen的问题,但性能不够好.Graphtree 由OneOaaS开发并开源出来,用来解决Zabbix的图形展示问题, ...
- 5 questions
1.软件开发中有哪几种过程模型? 2.详细设计有哪几种描述方法? 3.什么是需求分析? 4.软件设计的基本原理包括哪些内容? 5.简述文档在软件工程中的作用? 逸翔.
- leetcode: 638.大礼包
题目描述: https://leetcode-cn.com/problems/shopping-offers/ 解题思路: 这类求最大最小的问题首先想到的就是用DP求解. 这题还用到了递归,首先计算单 ...
- 第三个Sprint冲刺第4天
成员:罗凯旋.罗林杰.吴伟锋.黎文衷 讨论内容:各成员汇报各自完成的情况.