伟哥对RTO & RPO的通俗理解
RTO (Recovery Time Objective,复原时间目标)是企业可容许服务中断的时间长度。
比如说灾难发生后半天内便需要恢复,RTO值就是十二小时;
RPO (Recovery Point Objective,复原点目标)是指当服务恢复后,恢复得来的数据所对应时的间点。
如果现时企业每天凌晨零时进行备份一次,当服务恢复后,系统内储存的只会是最近灾难发生前那个凌晨零时的资料。
根据以上两个简单的原则,企业不但可以对现有的数据系统作出,也可以按照既定的RTO及RPO要求,选购最适合的灾备方案。
RTO及RPO与方案售价有着密切的关系,然而完美的方案当然是RTO及RPO皆为零,表示当灾难发生后,系统立即恢复,而且完全没有数据丢失,可是其造价是非常昂贵的,而且也不一定有这个必要。
因此,最佳方案必需在RTO,RPO,维护及价钱多方面,都能达致平衡。尤其是中小企业,在资源紧拙的情况,应先好好了解对RTO及RPO的要求,然后再看看价钱,那就比较容易找到,适合企业的方案了。
通俗的讲,RPO和RTO都属于灾难恢复范畴。RPO在于数据库层面,RPO的依据,主要是你的数据备份。 RTO更关注于应用层面,RTO是从数据的恢复,一直到恢复到当前系统可用状态的值。
因此,一般来讲,RTO的值要大于RPO。 比如,数据备份是24小时一次,那RPO为24小时;RTO则要考虑数据恢复到24小时之前,包括24小时之内,业务数据的补录,所以,一般都在3天以上。
伟哥对RTO & RPO的通俗理解的更多相关文章
- 通俗理解Android事件分发与消费机制
深入:Android Touch事件传递机制全面解析(从WMS到View树) 通俗理解Android事件分发与消费机制 说起Android滑动冲突,是个很常见的场景,比如SliddingMenu与Li ...
- Effective Java通俗理解(持续更新)
这篇博客是Java经典书籍<Effective Java(第二版)>的读书笔记,此书共有78条关于编写高质量Java代码的建议,我会试着逐一对其进行更为通俗易懂地讲解,故此篇博客的更新大约 ...
- Effective Java通俗理解(下)
Effective Java通俗理解(上) 第31条:用实例域代替序数 枚举类型有一个ordinal方法,它范围该常量的序数从0开始,不建议使用这个方法,因为这不能很好地对枚举进行维护,正确应该是利用 ...
- [伟哥开源项目基金会](https://github.com/AspNetCoreFoundation)
伟哥开源项目基金会 GitHub_base=> 伟哥开源项目基金会 该项目作者为伟哥,GitHub地址:https://github.com/amh1979: 该项目维护者为鸟窝,GitHub地 ...
- 关于MySQL中的自联结的通俗理解
关于MySQL中的自联结的通俗理解 前言:最近在通过SQL必知必会这本书学习MySQL的基本使用,在学习中也或多或少遇到了点问题,我也正好分享给大家,我的这篇博客用到的所有表格的代码都是来自SQL必知 ...
- Effective Java通俗理解(上)
这篇博客是Java经典书籍<Effective Java(第二版)>的读书笔记,此书共有78条关于编写高质量Java代码的建议,我会试着逐一对其进行更为通俗易懂地讲解,故此篇博客的更新大约 ...
- OSI七层模式简单通俗理解
OSI七层模式简单通俗理解 这个模型学了好多次,总是记不住.今天又看了一遍,发现用历史推演的角度去看问题会更有逻辑,更好记.本文不一定严谨,可能有错漏,主要是抛砖引玉,帮助记性不好的人.总体来说,OS ...
- 通俗理解决策树中的熵&条件熵&信息增益
参考通俗理解决策树算法中的信息增益 说到决策树就要知道如下概念: 熵:表示一个随机变量的复杂性或者不确定性. 假如双十一我要剁手买一件衣服,但是我一直犹豫着要不要买,我决定买这件事的不确定性(熵)为2 ...
- CNN笔记:通俗理解卷积神经网络【转】
本文转载自:https://blog.csdn.net/v_july_v/article/details/51812459 通俗理解卷积神经网络(cs231n与5月dl班课程笔记) 1 前言 2012 ...
随机推荐
- UVA 315 Network (模板题)(无向图求割点)
<题目链接> 题目大意: 给出一个无向图,求出其中的割点数量. 解题分析: 无向图求割点模板题. 一个顶点u是割点,当且仅当满足 (1) u为树根,且u有多于一个子树. (2) u不为树根 ...
- Windows 7 下如何配置 java 环境变量
安装 JDK.从Oracel官方网站上下载,下载完成后安装. http://www.oracle.com/technetwork/java/javase/downloads/jdk8-download ...
- BZOJ.4888.[TJOI2017]异或和(树状数组)
BZOJ 洛谷 \(Description\) 求所有区间和的异或和. \(n\leq 10^5,\ \sum a_i\leq 10^6\). \(Solution\) 这样的题还是要先考虑按位做. ...
- Kotlin基础(一)Kotlin快速入门
Kotlin快速入门 一.函数 /* * 1.函数可以定义在文件最外层,不需要把它放在类中 * 2.可以省略结尾分号 * */ fun main(args: Array<String>) ...
- ReactNative用指定的真机/模拟器运行项目
使用模拟器运行项目: 命令行中React native项目目录下键入react-native run-ios会启动iOS模拟器, 默认是使用iPhone6,如果想要试用其他版本的模拟器则需要在reac ...
- C#数组,ArrayList,List
一.数组声明方式 1,声明一个未经初始化的数组引用,以后可以把这引用初使化为一个数组实例 int[] int_array; int_array = new int[2]; 注:数组的引用必须以相同或相 ...
- echarts相关的可视化数据
echarts使用步骤: 1)设置一个容器,该容器用来放图形,一定要给容器设置高度: 2)初始化echarts实例,语法:var aa = echarts.init(DOM); 例如: echar ...
- PAT Basic 1009
1009 说反话 (20 分) 给定一句英语,要求你编写程序,将句中所有单词的顺序颠倒输出. 输入格式: 测试输入包含一个测试用例,在一行内给出总长度不超过 80 的字符串.字符串由若干单词和若干空格 ...
- Codeforces Round #443 (Div. 1) B. Teams Formation
B. Teams Formation link http://codeforces.com/contest/878/problem/B describe This time the Berland T ...
- HDU 4786 Fibonacci Tree 最小生成树
Fibonacci Tree 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4786 Description Coach Pang is intere ...