传送门


先将所有模板串扔进广义SAM。发现作文的\(L0\)具有单调性,即\(L0\)更小不会影响答案,所以二分答案。

假设当前二分的值为\(mid\),将当前的作文放到广义SAM上匹配。

设对于第\(1-i\)个字符来说,最少的失配字符数为\(dp_i\),那么\(dp_i = dp_{i-1} + 1\),且如果当前匹配长度\(len \geq mid\),还有转移\(dp_i = \min\limits_{j=i-len}^{i-mid} dp_j\)。发现在\(i\)增大的过程中\(i-len\)单调不减,因为\(i\)增大\(1\),\(len\)也最多增大\(1\)。这类似于滑动窗口问题,可以单调队列优化转移,做到复杂度\(O(LlogL)\)。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<iomanip>
#include<queue>
//This code is written by Itst
using namespace std; const int MAXN = 2.2e6 + 7;
namespace SAM{
int Lst[MAXN] , Sst[MAXN] , fa[MAXN] , trans[MAXN][2];
int cnt = 1 , L; int insert(int p , int len , int x){
int t = ++cnt;
Lst[t] = len;
while(p && !trans[p][x]){
trans[p][x] = t;
p = fa[p];
}
if(!p){
Sst[t] = fa[t] = 1;
return t;
}
int q = trans[p][x];
Sst[t] = Lst[p] + 2;
if(Lst[q] == Lst[p] + 1){
fa[t] = q;
return t;
}
int k = ++cnt;
memcpy(trans[k] , trans[q] , sizeof(trans[k]));
Lst[k] = Lst[p] + 1;
Sst[k] = Sst[q];
Sst[q] = Lst[p] + 2;
fa[k] = fa[q];
fa[q] = fa[t] = k;
while(trans[p][x] == q){
trans[p][x] = k;
p = fa[p];
}
return t;
}
};
char s[MAXN >> 1];
int ch[MAXN >> 1][2] , dep[MAXN >> 1] , ind[MAXN >> 1];
int N , M , L , cnt = 1; void insert(){
scanf("%s" , s + 1);
L = strlen(s + 1);
int cur = 1;
for(int i = 1 ; i <= L ; ++i){
if(!ch[cur][s[i] - '0']){
ch[cur][s[i] - '0'] = ++cnt;
dep[cnt] = dep[cur] + 1;
}
cur = ch[cur][s[i] - '0'];
}
} void build(){
queue < int > q;
q.push(ind[1] = 1);
while(!q.empty()){
int x = q.front();
q.pop();
for(int i = 0 ; i < 2 ; ++i)
if(ch[x][i]){
ind[ch[x][i]] = SAM::insert(ind[x] , dep[ch[x][i]] , i);
q.push(ch[x][i]);
}
}
} deque < int > q;
int dp[MAXN >> 1];
bool check(int mid){
q.clear();
int u = 1 , len = 0;
for(int i = 1 ; i <= L ; ++i){
dp[i] = dp[i - 1] + 1;
if(SAM::trans[u][s[i] - '0']){
u = SAM::trans[u][s[i] - '0'];
++len;
}
else{
while(u && !SAM::trans[u][s[i] - '0'])
u = SAM::fa[u];
!u ? (u = 1 , len = 0) : (len = SAM::Lst[u] + 1 , u = SAM::trans[u][s[i] - '0']);
}
while(!q.empty() && q.front() < i - len)
q.pop_front();
if(len >= mid){
while(!q.empty() && dp[q.back()] >= dp[i - mid])
q.pop_back();
q.push_back(i - mid);
}
if(!q.empty())
dp[i] = min(dp[i] , dp[q.front()]);
}
return dp[L] <= 0.1 * L;
} int main(){
#ifndef ONLINE_JUDGE
freopen("in" , "r" , stdin);
//freopen("out" , "w" , stdout);
#endif
cin >> N >> M;
for(int i = 1 ; i <= M ; ++i)
insert();
build();
for(int i = 1 ; i <= N ; ++i){
scanf("%s" , s + 1);
L = strlen(s + 1);
int l = 0 , r = L;
while(l < r){
int mid = (l + r + 1) >> 1;
check(mid) ? l = mid : r = mid - 1;
}
cout << l << endl;
}
return 0;
}

Luogu4022 CTSC2012 熟悉的文章 广义SAM、二分答案、单调队列的更多相关文章

  1. CTSC2012 熟悉的文章 广义后缀自动机_单调队列

    没啥难的,主要是单调队列忘了咋求了QAQ... Code: #include <cstdio> #include <algorithm> #include <cstrin ...

  2. [bzoj2806][Ctsc2012]Cheat(后缀自动机(SAM)+二分答案+单调队列优化dp)

    偷懒直接把bzoj的网页内容ctrlcv过来了 2806: [Ctsc2012]Cheat Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1943   ...

  3. bzoj 2806: [Ctsc2012]Cheat【广义SAM+二分+dp+单调队列】

    把模板串建一个广义SAM 然后在线查询,每次在SAM上预处理出一个a[i]表示i位置向前最多能匹配多长的模板串 二分答案L,dp判断,设f[i]为·~i有几个匹配,转移显然是f[i]=max{f[i- ...

  4. BZOJ_3316_JC loves Mkk_ 二分答案 + 单调队列

    BZOJ_3316_JC loves Mkk_ 二分答案 + 单调队列 题意: 分析: 拆成链,二分答案,奇偶两个单调队列维护最大子段和,记录方案. 代码: #include <cstdio&g ...

  5. Luogu4022 CTSC2012熟悉的文章(广义后缀自动机+二分答案+动态规划+单调队列)

    对作文库中的串建出广义SAM,然后显然可以二分答案,二分之后考虑暴力dp,设f[i]为前i位最长匹配长度,显然有f[i]=max(f[i-1],f[j]+i-j) (i-j>=l&&am ...

  6. [CTSC2012]熟悉的文章(广义后缀自动机+二分答案+单调队列优化DP)

    我们对作文库建出广义后缀自动机.考虑用\(SAM\)处理出来一个数组\(mx[i]\),表示从作文的第\(i\)个位置向左最远在作文库中出现的子串的长度.这个东西可以在\(SAM\)上跑\(trans ...

  7. Luogu-4022 [CTSC2012]熟悉的文章

    广义后缀自动机+DP 对于作文库建出广义后缀自动机,广义自动机就是在每次添加一个字符串之前把\(last=0\),然后正常添加就好了 对于每个询问串,预处理出每个位置\(i\)能向前匹配的最长长度\( ...

  8. 【BZOJ 2806】 2806: [Ctsc2012]Cheat (SAM+二分+DP+单调队列)

    2806: [Ctsc2012]Cheat Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1262  Solved: 643 Description ...

  9. loj 10181 绿色通道 二分答案+单调队列DP

    空题段长度即为单调队列长度区间 每次二分答案进行check即可 #include<bits/stdc++.h> using namespace std; ; const int inf=0 ...

随机推荐

  1. Linux 学习笔记之超详细基础linux命令 Part 9

    Linux学习笔记之超详细基础linux命令 by:授客 QQ:1033553122 ---------------------------------接Part 8----------------- ...

  2. 13.1、多进程:进程锁Lock、信号量、事件

    进程锁: 为什么要有进程锁:假如现在有一台打印机,qq要使用打印机,word文档也要使用打印机,如果没有使用进程锁,可能会导致一些问题,比如QQ的任务打印到一半,Word插进来,于是打印出来的结果是各 ...

  3. Scala多重继承及AOP

    package traitandclass /** * Created by zhen on 2018/8/23. */ class Human { println("Human" ...

  4. pymongo的用法

    先看一下官方给出的简单例子,涵盖了大部分内容: >>> import pymongo >>> client = pymongo.MongoClient(" ...

  5. nginx 了解一下

    先决条件 想要流畅的配置 nginx 需要了解一下内容: 1.nginx 调用方式: 启动 (双击 exe.cmd start nginx .cmd nginx) 使用 (powershell 调用需 ...

  6. Linux 小知识翻译 - 「协议(protocol)」

    对于理解服务器和网络来说,「协议」是不可缺少的概念. 「协议(protocol)」有「规则,规定」的意思. 实际上「协议」的函数很广,在通信领域,「协议」规定了「在通信时,什么样的情况下,以什么样的顺 ...

  7. January 20th, 2018 Week 3rd Saturday

    We may encounter many defeats but we must not be defeated. 我们可能会失败很多次,但决不能被打败. As long as we are con ...

  8. Reachability

    一.Reachability中介绍了取得/检测网络状态的方法. 二.使用 1.添加源文件:Reachability.h和Reachability.m 2.添加framework———SystemCon ...

  9. 【Beta Scrum】冲刺! 2/5

    1. 今日完成情况 人员 学号 分工 是否完成 完成情况 胡武成 031502610 学习java后端登录验证方式,尝试编写登录api N 刚学会springmvc登录token拦截,准备明天登录注册 ...

  10. Java计模模式之六 ----- 组合模式和过滤器模式

    前言 在上一篇中我们学习了结构型模式的外观模式和装饰器模式.本篇则来学习下组合模式和过滤器模式. 组合模式 简介 组合模式是用于把一组相似的对象当作一个单一的对象.组合模式依据树形结构来组合对象,用来 ...