P3830 [SHOI2012]随机树

链接

分析: 

  第一问:f[i]表示有i个叶子结点的时候的平均深度,$f[i] = \frac{f[i - 1] + 2 + f[i - 1] * (i - 1)}{2} $,表示新增加一个叶子结点,深度增加2,加权后取平均值。

  第二问:f[i][j]表示有i个叶子结点,树的深度大于等于j的概率,有$f[i][max(k, l)+ 1] = \frac{f[j][k] \times f[i - j][l]}{i - 1}$,$ans=\sum\limits_{i = 1}^{n} i * f[n][i]$。

  其中除以$i-1$表示i个叶子结点中,左儿子为j个时候的概率。因为左儿子结点只有$i-1$个取值,于是每个的概率都是$\frac{1}{i-1}$。

  枚举完左儿子的叶子结点,右儿子叶子结点也就确定了,然后左右儿子结点都是一个相同的子问题。

代码:

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<queue>
#include<map>
#include<vector>
#include<bitset>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
void solve1(int n) {
static double f[N];
for (int i = ; i <= n; ++i) f[i] = f[i - ] + 2.0 / i;
printf("%.6lf\n", f[n]);
}
void solve2(int n) {
static double f[N][N];
f[][] = 1.0;
for (int i = ; i <= n; ++i)
for (int j = ; j < i; ++j)
for (int k = ; k <= j; ++k)
for (int l = ; l <= (i - j); ++l)
f[i][max(k, l) + ] += f[j][k] * f[i - j][l] / (i - );
double ans = ;
for (int i = ; i <= n; ++i) ans += i * f[n][i];
printf("%.6lf\n", ans);
}
int main() {
int ty = read(), n = read();
ty == ? solve1(n) : solve2(n);
return ;
}

P3830 [SHOI2012]随机树的更多相关文章

  1. P3830 [SHOI2012]随机树 题解

    P3830 随机树 坑题,别人的题解我看了一个下午没一个看得懂的,我还是太弱了. 题目链接 P3830 [SHOI2012]随机树 题目描述 输入输出格式 输入格式: 输入仅有一行,包含两个正整数 q ...

  2. luogu P3830 [SHOI2012]随机树 期望 dp

    LINK:随机树 非常经典的期望dp. 考虑第一问:设f[i]表示前i个叶子节点的期望平均深度. 因为期望具有线性性 所以可以由每个叶子节点的期望平均深度得到总体的. \(f[i]=(f[i-1]\c ...

  3. 洛谷 P3830 [SHOI2012]随机树

    https://www.luogu.org/problemnew/show/P3830 具体方法见代码.. 其实挺神奇的,概率可以先算出“前缀和”(A小于等于xxx的概率),然后再“差分”得到A恰好为 ...

  4. 洛谷P3830 [SHOI2012]随机树——概率期望

    题目:https://www.luogu.org/problemnew/show/P3830 询问1:f[x]表示有x个叶节点的树的叶节点平均深度: 可以把被扩展的点的深度看做 f[x-1] ,于是两 ...

  5. luogu P3830 [SHOI2012]随机树

    输入格式 输入仅有一行,包含两个正整数 q, n,分别表示问题编号以及叶结点的个数. 输出格式 输出仅有一行,包含一个实数 d,四舍五入精确到小数点后 6 位.如果 q = 1,则 d 表示叶结点平均 ...

  6. 洛谷P3830 [SHOI2012]随机树(期望dp)

    题面 luogu 题解 第一问: 设\(f[i]\)表示\(i\)步操作后,平均深度期望 \(f[i] = \frac {f[i - 1] * (i - 1)+f[i-1]+2}{i}=f[i-1]+ ...

  7. [SHOI2012]随机树

    [SHOI2012]随机树 题目大意( 网址戳我! ) 随机树是一颗完全二叉树,初始状态下只有一个节点. 随机树的生成如下:每次随机选择一个叶子节点,扩展出两个儿子. 现在给定一个正整数\(n\)(\ ...

  8. bzoj2830: [Shoi2012]随机树

    题目链接 bzoj2830: [Shoi2012]随机树 题解 q1好做 设f[n]为扩展n次后的平均深度 那么\(f[n] = \frac{f[n - 1] * (n - 1) + f[n - 1] ...

  9. luogu3830 [SHOI2012]随机树

    传送门:洛谷 题目大意:对于一个只有一个节点的二叉树,一次操作随机将这棵树的叶节点的下方增加两个节点.$n-1$次操作后变为$n$个叶节点的二叉树.求:(1)叶节点平均深度的期望值(2)树深度的数学期 ...

随机推荐

  1. 51Testing专访史亮:测试人员在国外

    不久前,我接受了51Testing的访问,讨论了软件测试的一些问题.以下是全文. 1.史亮老师,作为我们51Testing的老朋友,能和我们说说您最近在忙些什么吗? 自2011年起,我加入Micros ...

  2. python内置小工具

    python -m http.server # 启动一个下载服务器 echo '{"job": "developer", "job": &q ...

  3. 为什么内核访问用户数据之前,要做access_ok?【转】

    linuxer 案例 比如内核的如下commit引入了一个严重的安全漏洞(编号CVE-2017-5123): 危害 一个攻击案例可以参考: freebuf <Linux内核Waitid系统调用本 ...

  4. Android中SELinux的TE简介【转】

    转自:https://blog.csdn.net/murphykwu/article/details/52457667 selinux的概念如上一篇链接所示: http://www.cnblogs.c ...

  5. windows 实用技巧

    以下内容版权归原作者所有!!!如果侵权,立即删除. 1.系统激活:https://mp.weixin.qq.com/s/Kl_iEeSSxSprblfSRZ6yEQ 2.百度云下载:https://w ...

  6. .NET Core tasks.json 简介

    1.执行命令:dotnet> dotnet new console -o myApp 2.tasks.json文件配置: { "version": "2.0.0&q ...

  7. Postgresql - jsonb_pretty & dateStyle

    1. SHOW datestyle; DateStyle ----------- ISO, MDY(1 row) INSERT INTO container VALUES ('13/01/2010') ...

  8. row_number() over() 一句话概括,以及max()函数的一种查询分组中最大值的用法

    row_number() over(partition by col1 order by col2) 根据COL1分组可能会有多个组,每组组内根据COL2进行排序.每组内都有自动生成的序号,从1开始, ...

  9. 关于plist文件的那些事

    今天遇到新生问一个问题,就是用自己定义了一个plist文件,然后可以往里面写东西,但是写过再次运行的时候里面的数据总是最后一次写入的数据.后来就专门研究了一下plist文件. 大家都知道当你创建一个项 ...

  10. 回文数的golang实现

    判断一个整数是否是回文数.回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数 输入: 输出: true 输入: - 输出: false 解释: 从左向右读, 为 - . 从右向左读, 为 - ...