P3830 [SHOI2012]随机树
P3830 [SHOI2012]随机树
分析:
第一问:f[i]表示有i个叶子结点的时候的平均深度,$f[i] = \frac{f[i - 1] + 2 + f[i - 1] * (i - 1)}{2} $,表示新增加一个叶子结点,深度增加2,加权后取平均值。
第二问:f[i][j]表示有i个叶子结点,树的深度大于等于j的概率,有$f[i][max(k, l)+ 1] = \frac{f[j][k] \times f[i - j][l]}{i - 1}$,$ans=\sum\limits_{i = 1}^{n} i * f[n][i]$。
其中除以$i-1$表示i个叶子结点中,左儿子为j个时候的概率。因为左儿子结点只有$i-1$个取值,于是每个的概率都是$\frac{1}{i-1}$。
枚举完左儿子的叶子结点,右儿子叶子结点也就确定了,然后左右儿子结点都是一个相同的子问题。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<iostream>
#include<cctype>
#include<set>
#include<queue>
#include<map>
#include<vector>
#include<bitset>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
void solve1(int n) {
static double f[N];
for (int i = ; i <= n; ++i) f[i] = f[i - ] + 2.0 / i;
printf("%.6lf\n", f[n]);
}
void solve2(int n) {
static double f[N][N];
f[][] = 1.0;
for (int i = ; i <= n; ++i)
for (int j = ; j < i; ++j)
for (int k = ; k <= j; ++k)
for (int l = ; l <= (i - j); ++l)
f[i][max(k, l) + ] += f[j][k] * f[i - j][l] / (i - );
double ans = ;
for (int i = ; i <= n; ++i) ans += i * f[n][i];
printf("%.6lf\n", ans);
}
int main() {
int ty = read(), n = read();
ty == ? solve1(n) : solve2(n);
return ;
}
P3830 [SHOI2012]随机树的更多相关文章
- P3830 [SHOI2012]随机树 题解
P3830 随机树 坑题,别人的题解我看了一个下午没一个看得懂的,我还是太弱了. 题目链接 P3830 [SHOI2012]随机树 题目描述 输入输出格式 输入格式: 输入仅有一行,包含两个正整数 q ...
- luogu P3830 [SHOI2012]随机树 期望 dp
LINK:随机树 非常经典的期望dp. 考虑第一问:设f[i]表示前i个叶子节点的期望平均深度. 因为期望具有线性性 所以可以由每个叶子节点的期望平均深度得到总体的. \(f[i]=(f[i-1]\c ...
- 洛谷 P3830 [SHOI2012]随机树
https://www.luogu.org/problemnew/show/P3830 具体方法见代码.. 其实挺神奇的,概率可以先算出“前缀和”(A小于等于xxx的概率),然后再“差分”得到A恰好为 ...
- 洛谷P3830 [SHOI2012]随机树——概率期望
题目:https://www.luogu.org/problemnew/show/P3830 询问1:f[x]表示有x个叶节点的树的叶节点平均深度: 可以把被扩展的点的深度看做 f[x-1] ,于是两 ...
- luogu P3830 [SHOI2012]随机树
输入格式 输入仅有一行,包含两个正整数 q, n,分别表示问题编号以及叶结点的个数. 输出格式 输出仅有一行,包含一个实数 d,四舍五入精确到小数点后 6 位.如果 q = 1,则 d 表示叶结点平均 ...
- 洛谷P3830 [SHOI2012]随机树(期望dp)
题面 luogu 题解 第一问: 设\(f[i]\)表示\(i\)步操作后,平均深度期望 \(f[i] = \frac {f[i - 1] * (i - 1)+f[i-1]+2}{i}=f[i-1]+ ...
- [SHOI2012]随机树
[SHOI2012]随机树 题目大意( 网址戳我! ) 随机树是一颗完全二叉树,初始状态下只有一个节点. 随机树的生成如下:每次随机选择一个叶子节点,扩展出两个儿子. 现在给定一个正整数\(n\)(\ ...
- bzoj2830: [Shoi2012]随机树
题目链接 bzoj2830: [Shoi2012]随机树 题解 q1好做 设f[n]为扩展n次后的平均深度 那么\(f[n] = \frac{f[n - 1] * (n - 1) + f[n - 1] ...
- luogu3830 [SHOI2012]随机树
传送门:洛谷 题目大意:对于一个只有一个节点的二叉树,一次操作随机将这棵树的叶节点的下方增加两个节点.$n-1$次操作后变为$n$个叶节点的二叉树.求:(1)叶节点平均深度的期望值(2)树深度的数学期 ...
随机推荐
- Git 恢复本地误删的文件
通过git进行代码管理的项目,如果在本地编辑的过程中误删了某些文件或者文件夹,可以通过git操作来复原. Step 1: git status 查看本地对改动的暂存记录.如下图所示,本人误删了文件夹“ ...
- python正则表达式模块re:正则表达式常用字符、常用可选标志位、group与groups、match、search、sub、split,findall、compile、特殊字符转义
本文内容: 正则表达式常用字符. 常用可选标志位. group与groups. match. search. sub. split findall. compile 特殊字符转义 一些现实例子 首发时 ...
- 利用搜狐新闻语料库训练100维的word2vec——使用python中的gensim模块
关于word2vec的原理知识参考文章https://www.cnblogs.com/Micang/p/10235783.html 语料数据来自搜狐新闻2012年6月—7月期间国内,国际,体育,社会, ...
- Python鸢尾花分类实现
#coding:utf-8 from sklearn.datasets import load_irisfrom sklearn.model_selection import train_test_s ...
- 设计模式--Proxy
转自:http://blog.csdn.net/dan_xp/article/details/1820852 最近一直在看java的设计模式 ,感觉印象最深刻的就是"面向接口编程" ...
- git命令设置简写(别名)
### git命令设置简写(别名) 前言:有时候在执行git命令比较多的情况下,每次敲git命令比较费时,同时有些命令比如cherry-pick这种比较长时更是费时,所以可以通过设置命令行简写来设置. ...
- 【PAT】B1085 PAT单位排行(25 分)(c++实现)
终于做的有点眉目了,今天学习了一点stl的皮毛,解题瞬间变容易了 下边开始分析本题 这道题如果用纯c解决实在太麻烦,试了半天两个超时,果断放弃,还是用map方便: 我的方法与柳神的方法是有区别的,我只 ...
- win10锁屏或睡眠一段时间后弹不出登录框
win10锁屏或睡眠一段时间后弹不出登录框 文:铁乐与猫 通常发生在win10更新到10周年版后发生,也就是会卡在登录状态,但不见输入登录框. 我出现这种情况的时候不是很严重,一般等久些也能出现,但问 ...
- Windows Server 2012 RS 配置IIS8.0+发布网站
一.配置iis 8.0 IIS 8.0 是 windows server 2012 自带的服务器管理系统.相比之前版本,IIS 8.0 安装和操作都更加简单,界面也很简洁,安装也很迅速. 1. 进入w ...
- 3星|《创投42章经》:前VC投资人的商业评论文集
创投42章经:互联网商业逻辑与投资进阶指南 作者2014年入行VC做投资人,2016年退出改作自媒体.书中主要是作者的各类商业评论的文集,少部分是跟投资相关的内容. 投资相关的内容,有些作者自己的视角 ...