题面

求所有长度为\(n\)的、没有相邻的1的01序列中,若0有\(x\)个、1有\(y\)个,\(x^ay^b\)之和(对\(m\)取模)。

\(n \le 10^7, m \le 10^8, 0 \le a, b \le 45\)

题解

本题麻烦的地方在于这个\(x^ay^b\)怎么处理。

\[x^ay^b = (n - y)^ay^b = \sum_{i = 0}^{a}C_a^in^i(-y)^{a - i}y^b = \sum_{i = 0}^{a}(-1)^{a - i}C_a^in^iy^{a+b-i}
\]

所以可以求出对于所有\(i \in [0, a]\)的\(y^i\)之和,然后枚举\(i\)乘上对应的系数,加起来即可。

那么如何求出\(y^i\)之和呢?

设\(f[k][i][0/1]\)表示长度为\(k\)、结尾是0/1的序列中“1的个数”(即\(y\))的\(i\)次方之和。

0结尾的序列可以从0/1序列转移过来,而1的出现次数不会变。

\[f[k][i][0] = f[k - 1][i][0] + f[k - 1][i][1]
\]

1结尾的序列只能从0结尾的转移过来,1的出现次数会+1,也就是新的\(y' = (y + 1)^i = \sum_{j = 0}^{i}C_i^j y\)。

\[f[k][i][1] = \sum_{j = 0}^{i}C_i^jf[k - 1][j][0]
\]

然后构建矩阵就可以做了!

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <set>
#define enter putchar('\n')
#define space putchar(' ')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op == 1) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 185;
int n, a, b, P, sze1, sze2;
ll c[N][N], ans;
struct matrix {
ll g[N][N];
matrix(){
memset(g, 0, sizeof(g));
}
matrix operator * (const matrix &b) const {
matrix c;
for(int i = 0; i < sze2; i++)
for(int j = 0; j < sze2; j++){
for(int k = 0; k < sze2; k++)
c.g[i][j] += g[i][k] * b.g[k][j];
c.g[i][j] %= P;
}
return c;
}
friend matrix qpow(matrix a, int x){
matrix ret;
for(int i = 0; i < sze2; i++)
ret.g[i][i] = 1;
while(x){
if(x & 1) ret = ret * a;
a = a * a;
x >>= 1;
}
return ret;
}
} op; int main(){
read(n), read(a), read(b), read(P);
sze1 = a + b + 1, sze2 = 2 * sze1;
c[0][0] = 1;
for(int i = 1; i <= a + b; i++){
c[i][0] = 1;
for(int j = 1; j <= i; j++)
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % P;
}
for(int i = 0; i < sze1; i++){
op.g[i][i] = op.g[i][sze1 + i] = 1;
for(int j = 0; j <= i; j++)
op.g[sze1 + i][j] = c[i][j];
}
op = qpow(op, n);
ll pw = 1;
for(int i = 0; i <= a; i++){
ans += (((a - i) & 1) ? -1 : 1) * c[a][i] * pw % P * (op.g[a + b - i][0] + op.g[sze1 + a + b - i][0]) % P;
pw = pw * n % P;
}
write((ans % P + P) % P), enter;
return 0;
}

BZOJ5298 [CQOI2018] 交错序列 | 矩阵乘法和一个trick的更多相关文章

  1. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

  2. [BZOJ5298][CQOI2018]交错序列(DP+矩阵乘法)

    https://blog.csdn.net/dream_maker_yk/article/details/80377490 斯特林数有时并没有用. #include<cstdio> #in ...

  3. BZOJ5298 CQOI2018交错序列(动态规划+矩阵快速幂)

    显然答案为Σkb·(n-k)a·C(n-k+1,k).并且可以发现ΣC(n-k,k)=fibn.但这实际上没有任何卵用. 纯组合看起来不太行得通,换个思路,考虑一个显然的dp,即设f[i][j][0/ ...

  4. P1962 斐波那契数列-题解(矩阵乘法扩展)

    https://www.luogu.org/problemnew/show/P1962(题目传送) n的范围很大,显然用普通O(N)的递推求F(n)铁定超时了.这里介绍一种用矩阵快速幂实现的解法: 首 ...

  5. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

  6. [矩阵乘法]裴波拉契数列II

    [ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I [矩阵乘法]裴波拉契数列II [矩阵乘法]裴波拉契数列II Description 形如 1 1 2 3 5 8 13 21 34 55 89 ...

  7. 【BZOJ5298】[CQOI2018]交错序列(动态规划,矩阵快速幂)

    [BZOJ5298][CQOI2018]交错序列(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 考虑由\(x\)个\(1\)和\(y\)个\(0\)组成的合法串的个数. 显然就是把\(1\)当做 ...

  8. [CQOI2018]交错序列 (矩阵快速幂,数论)

    [CQOI2018]交错序列 \(solution:\) 这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来.所以做这道题必须先知道(矩阵快速幂及如何构 ...

  9. c++的矩阵乘法加速trick

    最近读RNNLM的源代码,发现其实现矩阵乘法时使用了一个trick,这里描述一下这个trick. 首先是正常版的矩阵乘法(其实是矩阵乘向量) void matrixXvector(float* des ...

随机推荐

  1. git log 的常用选项

  2. EXPERT FOR SQL SERVER诊断系列--索引

    概述   索引设计是数据库设计中比较重要的一个环节,对数据库的性能起着至关重要的作用,但是索引的设计却又不是那么容易的事情,性能也不是那么轻易就获取到的,很多的技术人员因为不恰当的创建索引,最后使得其 ...

  3. GeForce Experience关闭自动更新

    GeForce Experience驱动更新很烦,而且有时更新后就打不开了,找到种方法关闭更新 1.安装并登陆 2.打开 C:\ProgramData\NVIDIA Corporation 3.进入D ...

  4. linux下expect环境安装以及简单脚本测试

    expect是交互性很强的脚本语言,可以帮助运维人员实现批量管理成千上百台服务器操作,是一款很实用的批量部署工具!expect依赖于tcl,而linux系统里一般不自带安装tcl,所以需要手动安装 下 ...

  5. HDU-6440-费马小定理

    亏我前几天还学数论呢...没有深入研究费马小定理这个东西...做事情一定要静下心来啊... 题目要求满足(m+n)^p=m^p+n^p,要你定义一个封闭的新的加法和乘法运算 我们知道费马小定理中有两种 ...

  6. Daily Scrumming* 2015.12.19(Day 11)

    一.团队scrum meeting照片 二.成员工作总结 姓名 任务ID 迁入记录 江昊 任务1090 https://github.com/buaaclubs-team/temp-front/com ...

  7. 20135337——Linux实践三:程序破解

    程序破解 查看 运行 反汇编,查看汇编码 对反汇编代码进行分析: 在main函数的汇编代码中可以看出程序在调用"scanf"函数请求输入之后,对 [esp+0x1c] 和 [esp ...

  8. 单工程搭建springmvc+spring+mybatis(maven,idea)

    单工程搭建springmvc+spring+mybatis(maven,idea) 1.pom.xml <properties> <project.build.sourceEncod ...

  9. Spring IOP 面向切面编程

    Spring IOP  面向切面编程 AOP操作术语 Joinpoint(连接点):所谓连接点是指那些被拦截到的点.在spring中,这些点指的是方法,因为spring只支持方法类型的连接点.(类里面 ...

  10. 使用nodejs去做一个验证码

    let express = require('express'); let captchapng = require('captchapng'); let app = express(); app.g ...