题面

求所有长度为\(n\)的、没有相邻的1的01序列中,若0有\(x\)个、1有\(y\)个,\(x^ay^b\)之和(对\(m\)取模)。

\(n \le 10^7, m \le 10^8, 0 \le a, b \le 45\)

题解

本题麻烦的地方在于这个\(x^ay^b\)怎么处理。

\[x^ay^b = (n - y)^ay^b = \sum_{i = 0}^{a}C_a^in^i(-y)^{a - i}y^b = \sum_{i = 0}^{a}(-1)^{a - i}C_a^in^iy^{a+b-i}
\]

所以可以求出对于所有\(i \in [0, a]\)的\(y^i\)之和,然后枚举\(i\)乘上对应的系数,加起来即可。

那么如何求出\(y^i\)之和呢?

设\(f[k][i][0/1]\)表示长度为\(k\)、结尾是0/1的序列中“1的个数”(即\(y\))的\(i\)次方之和。

0结尾的序列可以从0/1序列转移过来,而1的出现次数不会变。

\[f[k][i][0] = f[k - 1][i][0] + f[k - 1][i][1]
\]

1结尾的序列只能从0结尾的转移过来,1的出现次数会+1,也就是新的\(y' = (y + 1)^i = \sum_{j = 0}^{i}C_i^j y\)。

\[f[k][i][1] = \sum_{j = 0}^{i}C_i^jf[k - 1][j][0]
\]

然后构建矩阵就可以做了!

#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <set>
#define enter putchar('\n')
#define space putchar(' ')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op == 1) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 185;
int n, a, b, P, sze1, sze2;
ll c[N][N], ans;
struct matrix {
ll g[N][N];
matrix(){
memset(g, 0, sizeof(g));
}
matrix operator * (const matrix &b) const {
matrix c;
for(int i = 0; i < sze2; i++)
for(int j = 0; j < sze2; j++){
for(int k = 0; k < sze2; k++)
c.g[i][j] += g[i][k] * b.g[k][j];
c.g[i][j] %= P;
}
return c;
}
friend matrix qpow(matrix a, int x){
matrix ret;
for(int i = 0; i < sze2; i++)
ret.g[i][i] = 1;
while(x){
if(x & 1) ret = ret * a;
a = a * a;
x >>= 1;
}
return ret;
}
} op; int main(){
read(n), read(a), read(b), read(P);
sze1 = a + b + 1, sze2 = 2 * sze1;
c[0][0] = 1;
for(int i = 1; i <= a + b; i++){
c[i][0] = 1;
for(int j = 1; j <= i; j++)
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % P;
}
for(int i = 0; i < sze1; i++){
op.g[i][i] = op.g[i][sze1 + i] = 1;
for(int j = 0; j <= i; j++)
op.g[sze1 + i][j] = c[i][j];
}
op = qpow(op, n);
ll pw = 1;
for(int i = 0; i <= a; i++){
ans += (((a - i) & 1) ? -1 : 1) * c[a][i] * pw % P * (op.g[a + b - i][0] + op.g[sze1 + a + b - i][0]) % P;
pw = pw * n % P;
}
write((ans % P + P) % P), enter;
return 0;
}

BZOJ5298 [CQOI2018] 交错序列 | 矩阵乘法和一个trick的更多相关文章

  1. BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*

    BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...

  2. [BZOJ5298][CQOI2018]交错序列(DP+矩阵乘法)

    https://blog.csdn.net/dream_maker_yk/article/details/80377490 斯特林数有时并没有用. #include<cstdio> #in ...

  3. BZOJ5298 CQOI2018交错序列(动态规划+矩阵快速幂)

    显然答案为Σkb·(n-k)a·C(n-k+1,k).并且可以发现ΣC(n-k,k)=fibn.但这实际上没有任何卵用. 纯组合看起来不太行得通,换个思路,考虑一个显然的dp,即设f[i][j][0/ ...

  4. P1962 斐波那契数列-题解(矩阵乘法扩展)

    https://www.luogu.org/problemnew/show/P1962(题目传送) n的范围很大,显然用普通O(N)的递推求F(n)铁定超时了.这里介绍一种用矩阵快速幂实现的解法: 首 ...

  5. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

  6. [矩阵乘法]裴波拉契数列II

    [ 矩 阵 乘 法 ] 裴 波 拉 契 数 列 I I [矩阵乘法]裴波拉契数列II [矩阵乘法]裴波拉契数列II Description 形如 1 1 2 3 5 8 13 21 34 55 89 ...

  7. 【BZOJ5298】[CQOI2018]交错序列(动态规划,矩阵快速幂)

    [BZOJ5298][CQOI2018]交错序列(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 考虑由\(x\)个\(1\)和\(y\)个\(0\)组成的合法串的个数. 显然就是把\(1\)当做 ...

  8. [CQOI2018]交错序列 (矩阵快速幂,数论)

    [CQOI2018]交错序列 \(solution:\) 这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来.所以做这道题必须先知道(矩阵快速幂及如何构 ...

  9. c++的矩阵乘法加速trick

    最近读RNNLM的源代码,发现其实现矩阵乘法时使用了一个trick,这里描述一下这个trick. 首先是正常版的矩阵乘法(其实是矩阵乘向量) void matrixXvector(float* des ...

随机推荐

  1. QueryHelper

    [1].[代码] QueryHelper.java 跳至 [1] package my.db; import java.io.Serializable; import java.math.BigInt ...

  2. odoo订餐系统之订单设计

    订餐系统的主要功能便是用户下单部分,这里我们分为表头mylunch_order和表体mylunch_order_line两张主要的数据表,表头主要记录订单的一些通用信息,比如下单的操作人员 下单日期 ...

  3. 懒人小工具1:winform自动生成Model,Insert,Select,Delete以及导出Excel的方法

       懒人小工具2:T4自动生成Model,Insert,Select,Delete以及导出Excel的方法    github地址:https://github.com/Jimmey-Jiang/J ...

  4. BGFX 渲染引擎中着色器代码的调试方法

    在实时渲染的图形开发中,着色器代码(Shader)越来越复杂,于是单纯的靠经验和不断试错的开发和调试方法早已不能满足实际需求.使用调试工具进行调试,成为开发中重要的方法.Bgfx 是一款跨平台.抽象封 ...

  5. Java提高篇(1)封装

    三大特性之---封装 封装从字面上来理解就是包装的意思,专业点就是信息隐藏,是指利用抽象数据类型将数据和基于数据的操作封装在一起,使其构成一个不可分割的独立实体,数据被保护在抽象数据类型的内部,尽可能 ...

  6. 第三个Sprint冲刺第3天

    成员:罗凯旋.罗林杰.吴伟锋.黎文衷 组内各成员加紧完成自己的工作.

  7. JavaScript 编程易错点整理

    Case 1: 通过getElementById("id")获得是一个DOM元素节点对象: 通过getElementsByTagName("tagName")获 ...

  8. 关于Tomcat性能监控的第三方工具Probe的简介

    Tomcat Probe => Lambda Probe =>PSI Probe,这个小工具已经三易其名了.(现在挪窝到GitHub了,很方便). 这个Probe可以说是一个增强版本的 T ...

  9. 关于js中this指向的理解总结!

    关于js中this指向的理解! this是什么?定义:this是包含它的函数作为方法被调用时所属的对象. 首先,this的指向在函数定义的时候是确定不了的,只有函数执行的时候才能确定this到底指向谁 ...

  10. VSCODE安装以及使用Python运行调试代码的简单记录

    1. VScode安装 官网下载VSCODE https://code.visualstudio.com/ 下载呢windows的x64安装包,安装stable的版本 当前日期 2018.01.15 ...