1、管道函数

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/5/24 15:03
# @Author : zhang chao
# @File : s.py #pipe管道函数的应用
import pandas as pd
import numpy as np def adder(ele1,ele2):
return ele1+ele2 df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
print(df)
df2=df.pipe(adder,2)#df中每一个元素都加2
print('-'*100)
print("df.pipe(adder,2) df中每一个元素都加2")
print (df2) D:\Download\python3\python3.exe D:/Download/pycharmworkspace/s.py
col1 col2 col3
0 -0.541685 -1.009440 -1.680244
1 -0.881437 0.022469 0.911686
2 0.930035 1.073783 0.096894
3 -1.282204 -0.039941 0.147482
4 -1.743847 -1.187832 -0.402219
----------------------------------------------------------------------------------------------------
df.pipe(adder,2) df中每一个元素都加2
col1 col2 col3
0 1.458315 0.990560 0.319756
1 1.118563 2.022469 2.911686
2 2.930035 3.073783 2.096894
3 0.717796 1.960059 2.147482
4 0.256153 0.812168 1.597781 Process finished with exit code 0

2、

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/5/24 15:03
# @Author : zhang chao
# @File : s.py #可以使用apply()方法沿DataFrame或Panel的轴应用任意函数,它与描述性统计方法一样,采用可选的轴参数。
# 默认情况下,操作按列执行,将每列列为数组。
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
print (df)
print('-'*100)
print("df1=df.apply(np.mean)=df.apply(np.mean,axis=0) 默认按列执行操作:")
df1=df.apply(np.mean)
print (df1)
print('-'*100)
print("df2=df.apply(np.mean,axis=1) 按行执行操作:")
df2=df.apply(np.mean,axis=1)
print (df2)
print('-'*100)
df3=df.apply(lambda x: x.max() - x.min())
print("df3=df.apply(lambda x: x.max() - x.min()):")
print (df3)
print('-'*100)
df4=df['col1'].map(lambda x:x*100)
print("df4=df['col1'].map(lambda x:x*100):")
print (df4)
print('-'*100)
df5=df.applymap(lambda x:x*100)
print("df5=df.applymap(lambda x:x*100):")
print (df5) D:\Download\python3\python3.exe D:/Download/pycharmworkspace/s.py
col1 col2 col3
0 0.735342 0.438729 -0.261747
1 -1.490907 0.397943 0.105613
2 -0.298617 -0.328284 0.599502
3 -0.842654 0.324976 -0.047985
4 0.452950 1.102824 0.023971
----------------------------------------------------------------------------------------------------
df1=df.apply(np.mean)=df.apply(np.mean,axis=0) 默认按列执行操作:
col1 -0.288777
col2 0.387238
col3 0.083871
dtype: float64
----------------------------------------------------------------------------------------------------
df2=df.apply(np.mean,axis=1) 按行执行操作:
0 0.304108
1 -0.329117
2 -0.009133
3 -0.188555
4 0.526582
dtype: float64
----------------------------------------------------------------------------------------------------
df3=df.apply(lambda x: x.max() - x.min()):
col1 2.226249
col2 1.431108
col3 0.861248
dtype: float64
----------------------------------------------------------------------------------------------------
df4=df['col1'].map(lambda x:x*100):
0 73.534186
1 -149.090744
2 -29.861721
3 -84.265380
4 45.295040
Name: col1, dtype: float64
----------------------------------------------------------------------------------------------------
df5=df.applymap(lambda x:x*100):
col1 col2 col3
0 73.534186 43.872940 -26.174660
1 -149.090744 39.794331 10.561263
2 -29.861721 -32.828359 59.950153
3 -84.265380 32.497553 -4.798542
4 45.295040 110.282391 2.397062 Process finished with exit code 0

pandas函数应用的更多相关文章

  1. py使用笔记-pandas函数

    1,nan替换为0df = df(np.nan, 0, regex=True)2.inf替换为0df= df(np.inf, 0.0, regex=True)3.从数据库读取数据到dataframei ...

  2. 从Excel到Python:最常用的36个Pandas函数

    本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入.数据清洗.预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作. 生成数据表 常见的生成数据表的方法有两 ...

  3. pandas函数高级

    一.处理丢失数据 有两种丢失数据: None np.nan(NaN) 1. None None是Python自带的,其类型为python object.因此,None不能参与到任何计算中. #查看No ...

  4. pandas函数的使用

    一.Pandas的数据结构 1.Series Series是一种类似与一维数组的对象,由下面两个部分组成: values:一组数据(ndarray类型) index:相关的数据索引标签 1)Serie ...

  5. Python:pandas(二)——pandas函数

    Python:pandas(一) 这一章翻译总结自:pandas官方文档--General functions 空值:pd.NaT.np.nan //判断是否为空 if a is np.nan: .. ...

  6. pandas函数get_dummies的坑

    转载:https://blog.csdn.net/mvpboss1004/article/details/79188190 pandas中的get_dummies得到的one-hot编码数据类型是ui ...

  7. 第六节:pandas函数应用

    1.pipe() :表格函数应用: 2.apply():表格行列函数应用: 3.applymap():表格元素应用.

  8. 【转】python 中NumPy和Pandas工具包中的函数使用笔记(方便自己查找)

    二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准 ...

  9. pandas(二)函数应用和映射

    NumPy的ufuncs也可以操作pandas对象 >>> frame one two three four a 0 1 2 3 b 4 5 6 7 c 8 9 10 11 d 12 ...

随机推荐

  1. nested exception is org.apache.ibatis.reflection.ReflectionExceptio

    org.mybatis.spring.MyBatisSystemException: nested exception is org.apache.ibatis.reflection.Reflecti ...

  2. E325: ATTENTION

    vim/vi编辑器异常 E325: ATTENTION Found a swap file by the name "/usr/local/msmtp/etc/.msmtprc.swp&qu ...

  3. PAT A1124 Raffle for Weibo Followers (20 分)——数学题

    John got a full mark on PAT. He was so happy that he decided to hold a raffle(抽奖) for his followers ...

  4. DButils实现增删查改

    获取数据库连接 static Connection con=JdbcUtils.MyUtils();//这个连接类静态获取要自己定义 插入 public static void insert() th ...

  5. android ActionBarSherlock使用说明

    源代码地址:https://github.com/JakeWharton/ActionBarSherlock 1.添加项目依赖包 2.修改AndroidManifest.xml中的主题(或者继承该主题 ...

  6. VS2017中 C# dll引用(C生成dll,C++生成dll)小结 - 简书

    原文:VS2017中 C# dll引用(C生成dll,C++生成dll)小结 - 简书 dll引用小结 一.dll与应用程序 动态链接库(也称为DLL,即为“Dynamic Link Library” ...

  7. SQL跨服务器查询数据库

    有时候一个项目需要用到两个数据库或多个数据库而且这些数据库在不同的服务器上时,就需要通过跨服务器查找数据 在A服务器的数据库a查询服务器B的数据库b 的bb表 假如服务器B的IP地址为:10.0.22 ...

  8. 验证码处理类:UnCodebase.cs + BauDuAi 读取验证码的值(并非好的解决方案)

    主要功能:变灰,去噪,等提高清晰度等 代码类博客,无需多说,如下: public class UnCodebase { public Bitmap bmpobj; public UnCodebase( ...

  9. virtual box问题记录

    1.已存在的虚拟机打开错误,可能是版本不一样的问题,我5.2.16版本,原虚拟机所属版本为4.3.12,换回4.3.12版本virtual box即可.

  10. 基于uFUN开发板的心率计(一)DMA方式获取传感器数据

    前言 从3月8号收到板子,到今天算起来,uFUN到手也有两周的时间了,最近利用下班后的时间,做了个心率计,从单片机程序到上位机开发,到现在为止完成的差不多了,实现很简单,uFUN开发板外加一个Puls ...