1、管道函数

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/5/24 15:03
# @Author : zhang chao
# @File : s.py #pipe管道函数的应用
import pandas as pd
import numpy as np def adder(ele1,ele2):
return ele1+ele2 df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
print(df)
df2=df.pipe(adder,2)#df中每一个元素都加2
print('-'*100)
print("df.pipe(adder,2) df中每一个元素都加2")
print (df2) D:\Download\python3\python3.exe D:/Download/pycharmworkspace/s.py
col1 col2 col3
0 -0.541685 -1.009440 -1.680244
1 -0.881437 0.022469 0.911686
2 0.930035 1.073783 0.096894
3 -1.282204 -0.039941 0.147482
4 -1.743847 -1.187832 -0.402219
----------------------------------------------------------------------------------------------------
df.pipe(adder,2) df中每一个元素都加2
col1 col2 col3
0 1.458315 0.990560 0.319756
1 1.118563 2.022469 2.911686
2 2.930035 3.073783 2.096894
3 0.717796 1.960059 2.147482
4 0.256153 0.812168 1.597781 Process finished with exit code 0

2、

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2018/5/24 15:03
# @Author : zhang chao
# @File : s.py #可以使用apply()方法沿DataFrame或Panel的轴应用任意函数,它与描述性统计方法一样,采用可选的轴参数。
# 默认情况下,操作按列执行,将每列列为数组。
import pandas as pd
import numpy as np df = pd.DataFrame(np.random.randn(5,3),columns=['col1','col2','col3'])
print (df)
print('-'*100)
print("df1=df.apply(np.mean)=df.apply(np.mean,axis=0) 默认按列执行操作:")
df1=df.apply(np.mean)
print (df1)
print('-'*100)
print("df2=df.apply(np.mean,axis=1) 按行执行操作:")
df2=df.apply(np.mean,axis=1)
print (df2)
print('-'*100)
df3=df.apply(lambda x: x.max() - x.min())
print("df3=df.apply(lambda x: x.max() - x.min()):")
print (df3)
print('-'*100)
df4=df['col1'].map(lambda x:x*100)
print("df4=df['col1'].map(lambda x:x*100):")
print (df4)
print('-'*100)
df5=df.applymap(lambda x:x*100)
print("df5=df.applymap(lambda x:x*100):")
print (df5) D:\Download\python3\python3.exe D:/Download/pycharmworkspace/s.py
col1 col2 col3
0 0.735342 0.438729 -0.261747
1 -1.490907 0.397943 0.105613
2 -0.298617 -0.328284 0.599502
3 -0.842654 0.324976 -0.047985
4 0.452950 1.102824 0.023971
----------------------------------------------------------------------------------------------------
df1=df.apply(np.mean)=df.apply(np.mean,axis=0) 默认按列执行操作:
col1 -0.288777
col2 0.387238
col3 0.083871
dtype: float64
----------------------------------------------------------------------------------------------------
df2=df.apply(np.mean,axis=1) 按行执行操作:
0 0.304108
1 -0.329117
2 -0.009133
3 -0.188555
4 0.526582
dtype: float64
----------------------------------------------------------------------------------------------------
df3=df.apply(lambda x: x.max() - x.min()):
col1 2.226249
col2 1.431108
col3 0.861248
dtype: float64
----------------------------------------------------------------------------------------------------
df4=df['col1'].map(lambda x:x*100):
0 73.534186
1 -149.090744
2 -29.861721
3 -84.265380
4 45.295040
Name: col1, dtype: float64
----------------------------------------------------------------------------------------------------
df5=df.applymap(lambda x:x*100):
col1 col2 col3
0 73.534186 43.872940 -26.174660
1 -149.090744 39.794331 10.561263
2 -29.861721 -32.828359 59.950153
3 -84.265380 32.497553 -4.798542
4 45.295040 110.282391 2.397062 Process finished with exit code 0

pandas函数应用的更多相关文章

  1. py使用笔记-pandas函数

    1,nan替换为0df = df(np.nan, 0, regex=True)2.inf替换为0df= df(np.inf, 0.0, regex=True)3.从数据库读取数据到dataframei ...

  2. 从Excel到Python:最常用的36个Pandas函数

    本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入.数据清洗.预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作. 生成数据表 常见的生成数据表的方法有两 ...

  3. pandas函数高级

    一.处理丢失数据 有两种丢失数据: None np.nan(NaN) 1. None None是Python自带的,其类型为python object.因此,None不能参与到任何计算中. #查看No ...

  4. pandas函数的使用

    一.Pandas的数据结构 1.Series Series是一种类似与一维数组的对象,由下面两个部分组成: values:一组数据(ndarray类型) index:相关的数据索引标签 1)Serie ...

  5. Python:pandas(二)——pandas函数

    Python:pandas(一) 这一章翻译总结自:pandas官方文档--General functions 空值:pd.NaT.np.nan //判断是否为空 if a is np.nan: .. ...

  6. pandas函数get_dummies的坑

    转载:https://blog.csdn.net/mvpboss1004/article/details/79188190 pandas中的get_dummies得到的one-hot编码数据类型是ui ...

  7. 第六节:pandas函数应用

    1.pipe() :表格函数应用: 2.apply():表格行列函数应用: 3.applymap():表格元素应用.

  8. 【转】python 中NumPy和Pandas工具包中的函数使用笔记(方便自己查找)

    二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准 ...

  9. pandas(二)函数应用和映射

    NumPy的ufuncs也可以操作pandas对象 >>> frame one two three four a 0 1 2 3 b 4 5 6 7 c 8 9 10 11 d 12 ...

随机推荐

  1. zabbix监控nginx连接数量

    #!/bin/bash conn=`netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a,S[a]}' | grep "E ...

  2. sed插入,替换指定行的特定字符串,删除指定行首的#

    sed -i '$a service snmpd start' /etc/rc.local sed -i "41s:public:mykey:g" /etc/snmp/snmpd. ...

  3. 深入浅出的webpack构建工具---PostCss(五)

    一:PostCss是什么?  PostCss是一个样式处理工具,它通过自定义的插件和工具生态体系来重新定义css.它鼓励开发者使用规范的css原生语法编写代码,然后配置编译器转换需要兼容的浏览器版本, ...

  4. PAT A1127 ZigZagging on a Tree (30 分)——二叉树,建树,层序遍历

    Suppose that all the keys in a binary tree are distinct positive integers. A unique binary tree can ...

  5. SpringMVC异常处理方式

    一.描述 在J2EE项目的开发中,不管是对底层的数据库操作过程,还是业务层的处理过程,还是控制层的处理过程,都不可避免会遇到各种可预知的.不可预知的异常需要处理.每个过程都单独处理异常,系统的代码耦合 ...

  6. JavaScript中的slice函数

    String.slice(start,end)returns a string containing a slice, or substring, of string. It does not mod ...

  7. 如何利用”七牛云”在UEditor实现图片的上传和浏览

    在学习之前,我参考了朋友些的一篇关于这个功能实现的文章,非常不错.大家可以参考:http://www.cnblogs.com/John-Marnoon/p/5818528.html#3501846 里 ...

  8. url 传递中文参数乱码问题的终极解决方法。

    估计很多人在做web开发的时候,都会碰到过url传递中文参数,有时候会出现乱码的问题,但有些项目或者环境,又不会有问题.当遇到乱码的时候,上网找了很多解决方案,比如: 页面设置它的编码方式,改成utf ...

  9. springboot 中事件监听模型的一种实现

    目录 定义事件本身 定义事件源 定义监听者 一.需要实现 ApplicationListener 二.使用 @EventListener 注解 测试 项目结构 前言: 事件监听模型是一种常用的设计模式 ...

  10. 手机APP自动化之uiautomator2 +python3 UI自动化

    题记: 之前一直用APPium直到用安卓9.0  发现uiautomatorviewer不支持安卓 9.0,点击截屏按钮 一直报错,百度很久解决方法都不可以,偶然间看见有人推荐:uiautomator ...