KNN算法

K-近邻算法原理

K最近邻(kNN,k-NearestNeighbor)分类算法,见名思意。

我们的目的是要预测某个学生在数学课上的成绩。。。 
先来说明几个基本概念:图中每个点代表一个样本(在这里是指一个学生),横纵坐标代表了特征(到课率,作业质量),不同的形状代表了类别(即:红色代表A(优秀),绿色代表D(不及格))。

我们现在看(10,20)这个点,它就代表着:在数学课上,某个学生到课率是10%,交作业质量是20分,最终导致了他期末考试得了D等级(不佳)。同理,这6个点也就代表了6个往届学生的平时状态和最终成绩,称之为训练样本。。。。

现在要来实现我们的预测目的了,想象一下现在一学期快过完了,张三同学马上要考试了,他想知道自己能考的怎么样,他在数学老师那里查到了自己的到课率85%,作业质量是90,那么怎么实现预测呢?

张三可以看做是(85,90)这个点–也被称之为测试样本,首先,我们计算张三到其他6位同学(训练样本)的距离,点到点的距离相信我们初中就学了吧(一般用的欧氏距离)。

再选取前K个最近的距离,例如我们选择k=3,那么我们就找出距离最近的三个样本分别属于哪个类别,此例中,自然三个都是A等,所以可预测出张三的数学期末成绩可能是A等(优秀)。倘若李四现在也想进行预测,据他较近的3个中两个D,一个A,那么李四的数学期末成绩被预测为D。这也就是最开始所说的:在前k个样本中选择频率最高的类别作为预测类别。。。

总结其计算步骤如下:

<strong><code>1)算距离:给定测试对象,计算它与训练集中的每个对象的距离
2)找邻居:圈定距离最近的k个训练对象,作为测试对象的近邻
3)做分类:根据这k个近邻归属的主要类别,来对测试对象分类</code></strong>
1
2
3
<strong><code>1)算距离:给定测试对象,计算它与训练集中的每个对象的距离
2)找邻居:圈定距离最近的k个训练对象,作为测试对象的近邻
3)做分类:根据这k个近邻归属的主要类别,来对测试对象分类</code></strong>

好了,经过上诉过程,你是否对KNN算法基本思想有了一定了解。

2  K-近邻的优缺点

KNN算法的优点:

1)简单、有效。

2)重新训练的代价较低(类别体系的变化和训练集的变化,在Web环境和电子商务应用中是很常见的)。

3)计算时间和空间线性于训练集的规模(在一些场合不算太大)。

4)由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。

5)该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

KNN算法缺点:

1)KNN算法是懒散学习方法(lazy learning,基本上不学习),一些积极学习的算法要快很多。

2)类别评分不是规格化的(不像概率评分)。

3)输出的可解释性不强,例如决策树的可解释性较强。

4)该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。

该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。

5)计算量较大。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。3 K-近邻算法的Python实现

友情提示:本代码是基于Python2.7的,而且需要提前安装numpy函数库(这是我们常用的强大的科学计算包)。。。。

3.1 首先我们介绍一下代码实现步骤:

 
<strong><code>1)计算已知类别数据集中的点与当前点之间的距离
2)按距离递增次序排序
3)选取与当前点距离最小的k个点
4)统计前k个点所在的类别出现的频率
5)返回前k个点出现频率最高的类别作为当前点的预测分类</code></strong>
1
2
3
4
5
<strong><code>1)计算已知类别数据集中的点与当前点之间的距离
2)按距离递增次序排序
3)选取与当前点距离最小的k个点
4)统计前k个点所在的类别出现的频率
5)返回前k个点出现频率最高的类别作为当前点的预测分类</code></strong>

转载于数据科学与编程

KNN算法简介的更多相关文章

  1. 机器学习笔记--KNN算法1

    前言 Hello ,everyone. 我是小花.大四毕业,留在学校有点事情,就在这里和大家吹吹我们的狐朋狗友算法---KNN算法,为什么叫狐朋狗友算法呢,在这里我先卖个关子,且听我慢慢道来. 一 K ...

  2. KNN算法简单应用

    这里是写给小白看的,大牛路过勿喷. 1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集 ...

  3. 机器学习——KNN算法(k近邻算法)

    一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...

  4. JavaScript机器学习之KNN算法

    译者按: 机器学习原来很简单啊,不妨动手试试! 原文: Machine Learning with JavaScript : Part 2 译者: Fundebug 为了保证可读性,本文采用意译而非直 ...

  5. 机器学习之KNN算法

    1 KNN算法 1.1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属 ...

  6. 【转载】K-NN算法 学习总结

    声明:作者:会心一击 出处:http://www.cnblogs.com/lijingchn/ 本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接, ...

  7. K-NN算法 学习总结

    1. K-NN算法简介 K-NN算法 ( K Nearest Neighbor, K近邻算法 ), 是机器学习中的一个经典算法, 比较简单且容易理解. K-NN算法通过计算新数据与训练数据特征值之间的 ...

  8. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  9. KNN算法[分类算法]

    kNN(k-近邻)分类算法的实现 (1) 简介: (2)算法描述: (3) <?php /* *KNN K-近邻方法(分类算法的实现) */ /* *把.txt中的内容读到数组中保存,$file ...

随机推荐

  1. 550 5.7.1 Client does not have permissions to send as this sender

    收发邮件时出现以上这种情况,系统提示550 5.7.1 Client does not have permissions to send as this sender,这是什么原因赞成的呢? 活动目录 ...

  2. mysql 库 表 和 时间查询

    -- 查询 worker 库中 表 和 视图 select table_name from information_schema.tables where table_schema='worker' ...

  3. openvpn显示连接成功但是无法进行git操作

    使用openvpn连接公司内网以进行git操作.以管理员身份运行openvpn gui,一段时间后提示连接成功,右下角图标变成绿色,但是进行git操作,每次都发生失败,提示连接不上.右键点击openv ...

  4. 微信小程序和微信公众号的id是一个吗

    首先,简单说下我遇到的问题是我们的程序调用微信小程序得到openid,然后通过openID得到用户的唯一标识,用户得以登录,然而,当我们调用微信公众号也同样的到openid,同一以用户两个不同的ope ...

  5. toastr简单用法及修改垂直居中

    toastr是一个基于Jquery简单.漂亮的消息提示插件,使用简单.方便,可以根据设置的超时时间自动消失. 1.使用很简单,首选引入toastr的js.css文件html <script sr ...

  6. Hadoop 系列(三)Java API

    Hadoop 系列(三)Java API <dependency> <groupId>org.apache.hadoop</groupId> <artifac ...

  7. 利用redis制作消息队列

    redis在游戏服务器中的使用初探(一) 环境搭建redis在游戏服务器中的使用初探(二) 客户端开源库选择redis在游戏服务器中的使用初探(三) 信息存储redis在游戏服务器中的使用初探(四) ...

  8. JavaSE 初学进度条JProgressBar

    预备知识 创建进度条类后将其直接加入JFrame看看效果 public class JProgressBarDemo2 { public static void main(String args[]) ...

  9. xpath获取一个标签下的多个同级标签

    一.问题: 我在使用xpath获取文章内容的时候会遇到,多个相同的标签在同一级下面,但是我们只需要获取一部分的内容.比如我不想需要原标题这些内容. 二.解决: Xpath中有一个position()的 ...

  10. string所在头文件

    使用string.wstring 头文件:#include <string> 命名空间:std