MapRdeuce&Yarn的工作机制

一幅图解决你所有的困惑

那天在集群中跑一个MapReduce的程序时,在机器上jps了一下发现了每台机器中有好多个YarnChild。困惑什么时YarnChild,当程序跑完后就没有了,神奇。后来百度了下,又问问了别的大佬。原来是这样

什么是YarnChild:

答:MrAppmaster运行程序时向resouce manager 请求的maptask/reduceTask。也是运行程序的容器。其实它就是一个运行程序的进程。

图解说下:

hadoop1版本的MapRdeuce&Yarn的工作机制

1.客户端发来request。JobTracker接受request。

2.JobTracker将客户端发来的request任务分配给TaskTracker

3.然后TaskTracker生成maptask运行程序

4.JobTracker不仅要负责资源调度,还要负责监控应运运算流程。

缺点:耦合的高,当JobTracker死掉时,所有的客户端的请求任务都会死掉,而hadoop2则避免了这个问题,它中的对象多,但都各司其职,耦合的低,运行效率快。

hadoop2版本的MapRdeuce&Yarn的工作机制

        1.客户端发出请求,YARNRUNNER接受,生成一个代理对象,向resource manager请求一个application

2.resource manager返回application的提交路径和application_id(这里使用id是应为可能有多个任务用id来区别)

3.YARNRUNNER向hdfs提交job运行所需要的文件(application,job.split,job,.xml,job.jar)

4.向resource manager 报告提交完成,申请一个mrAppMaster

5.将用户的请求初始化成一个task,将task放到队列中,等待node manager来领取task任务。(这其中使用了调度策略,节约资源,如:Fair Capacity等等)

6.node manager领取到任务,

7.生成一个Container,然后在hdfs中下载运行资源。

8.向resource manager申请运行maptask的容器(带着任务,split,运行资源.的元数据..)

9.其他的node manager领取到resouce manager的任务,创建容器,此时的Container则是YarnChild,也是maptask,然后maptask在hdfs下载所要运行的资源。

10.MrAppMaster发送程序脚本运行jar,当maptask中的程序运行完成后,maptask的资源被resource manager回收了,但跑完的资源在node manager中。

11.当maptask运行完成后MRAppmaster又向resorce manager申请 reduce task(至于它申请多少个是由它有多少个map task决定的),然后根据忙于不忙node manager领取任务.创建container,

12.redcuetask 向map获取相应分区的数据资源,运行文件。

13.application运行完毕后MrAppmaster会向resource manager注销自己

总结:Yarn:资源调度系统(jar/xml/cpu/IO)

负责程序运行所需资源的分配回收等任务调度,于程序运行内部即使完全无关,所以yarn只是一个寺院调度平台,mapreudce 则是一个运行技术框架,那别的运算框架也可以使用yarn,如:spark/storm/flink....

        

MapRdeuce&Yarn的工作机制(YarnChild是什么)的更多相关文章

  1. yarn/mapreduce工作机制及mapreduce客户端代码编写

    首先需要知道的就是在老版本的hadoop中是没有yarn的,mapreduce既负责资源分配又负责业务逻辑处理.为了解耦,把资源分配这块抽了出来,形成了yarn,这样不仅mapreudce可以用yar ...

  2. Yarn 工作机制

    1.工作机制详述 (1)MR程序提交到客户端所在的节点. (2)YarnRunner向ResourceManager申请一个Application. (3)RM将该应用程序的资源路径返回给YarnRu ...

  3. MapReduce的工作机制

    <Hadoop权威指南>中的MapReduce工作机制和Shuffle: 框架 Hadoop2.x引入了一种新的执行机制MapRedcue 2.这种新的机制建议在Yarn的系统上,目前用于 ...

  4. Hadoop MapReduce 一文详解MapReduce及工作机制

    @ 目录 前言-MR概述 1.Hadoop MapReduce设计思想及优缺点 设计思想 优点: 缺点: 2. Hadoop MapReduce核心思想 3.MapReduce工作机制 剖析MapRe ...

  5. Spark工作机制简述

    Spark工作机制 主要模块 调度与任务分配 I/O模块 通信控制模块 容错模块 Shuffle模块 调度层次 应用 作业 Stage Task 调度算法 FIFO FAIR(公平调度) Spark应 ...

  6. MapReduce工作机制——Word Count实例(一)

    MapReduce工作机制--Word Count实例(一) MapReduce的思想是分布式计算,也就是分而治之,并行计算提高速度. 编程思想 首先,要将数据抽象为键值对的形式,map函数输入键值对 ...

  7. Hadoop的namenode的管理机制,工作机制和datanode的工作原理

    HDFS前言: 1) 设计思想 分而治之:将大文件.大批量文件,分布式存放在大量服务器上,以便于采取分而治之的方式对海量数据进行运算分析: 2)在大数据系统中作用: 为各类分布式运算框架(如:mapr ...

  8. Hadoop记录-MRv2(Yarn)运行机制

    1.MRv2结构—Yarn模式运行机制 Client---客户端提交任务 ResourceManager---资源管理 ---Scheduler调度器-资源分配Containers ----在Yarn ...

  9. MapReduce1 工作机制

    本文转自:Hadoop MapReduce 工作机制 工作流程 作业配置 作业提交 作业初始化 作业分配 作业执行 进度和状态更新 作业完成 错误处理 作业调度 shule(mapreduce核心)和 ...

随机推荐

  1. 小程序 切换到tabBar页面不刷新问题

    小程序跳转的几种方式有wx.navigateTo,wx.redirectTo,wx.reLaunch,wx.switchTab等.下面我们重点研究切换到tabBar的两种方式. wx.switchTa ...

  2. 【JVM】-NO.116.JVM.1 -【JDK11 HashMap详解-5-红黑树】

    Style:Mac Series:Java Since:2018-09-10 End:2018-09-10 Total Hours:1 Degree Of Diffculty:5 Degree Of ...

  3. python数据结构-如何让字典有序

    如何让字典有序 问题举例: 统计学生的成绩和名次,让其在字典中按排名顺序有序显示,具体格式如下 {'tom':(1, 99), 'lily':(2, 98), 'david':(3, 95)} 说明 ...

  4. 编写装饰器实现python请求错误重试功能

    在做接口自动化测试的时候,总会遇到,因连接超时等错误导致,接口脚本失败. 官方给出的方法: max_retries=5 出错重试5次注意的是,这个只对DNS,连接错误进行重试. from reques ...

  5. Windows平台搭建Kafka

    1. 安装JDK 1.1 安装文件:http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.htm ...

  6. 邮件发送 utils

    package cn.itcast.bos.utils;   import java.util.Properties;   import javax.mail.Message; import java ...

  7. day02 Python列表的增删查改及常用操作

    列表是python中的基础数据类型之一,其他语言中也有类似于列表的数据类型,比如js中叫数组,他是以[]括起来,每个元素以逗号隔开,而且他里面可以存放各种数据类型比如: li = [‘alex’,12 ...

  8. SRCNN

    SRCNN(超分辨率卷积神经网络) 网络结构 l  Conv1: f1 = 9 *9 activation = ‘relu’ l  Conv2: f2 = 1 *1 activation = ‘rel ...

  9. webpack学习入门

    写在前面的话 阅读本文之前,先看下面这个webpack的配置文件,如果每一项你都懂,那本文能带给你的收获也许就比较有限,你可以快速浏览或直接跳过:如果你和十天前的我一样,对很多选项存在着疑惑,那花一段 ...

  10. proc:基本数据库操作

    导师布置了一作业: 主要目的是学习数据库最基本的操作:创建用户.创建库表,和用程序访问数据库的相关技能(编码.编译等) 1,交易流水表(包含但不限于以下字段):交易日期.交易流水(用sequence实 ...