Dijkstra算法

算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

Floyd算法

算法描述

1)算法思想原理:

Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算----十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:

最后A3即为所求。

最短路径—大话Dijkstra算法和Floyd算法的更多相关文章

  1. 最短路径——Dijkstra算法和Floyd算法

    Dijkstra算法概述 Dijkstra算法是由荷兰计算机科学家狄克斯特拉(Dijkstra)于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图(无 ...

  2. 最短路径Dijkstra算法和Floyd算法整理、

    转载自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最短路径—Dijkstra算法和Floyd算法 Dijks ...

  3. 【转】最短路径——Dijkstra算法和Floyd算法

    [转]最短路径--Dijkstra算法和Floyd算法 标签(空格分隔): 算法 本文是转载,原文在:最短路径-Dijkstra算法和Floyd算法 注意:以下代码 只是描述思路,没有测试过!! Di ...

  4. 【转载】Dijkstra算法和Floyd算法的正确性证明

      说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正   ----------- ...

  5. Dijkstra算法和Floyd算法的正确性证明

    说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正   ------------- ...

  6. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  7. 最短路径—Dijkstra算法和Floyd算法【转】

    本文来自博客园的文章:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijk ...

  8. 图的最短路径——dijkstra算法和Floyd算法

    dijkstra算法 求某一顶点到其它各个顶点的最短路径:已知某一顶点v0,求它顶点到其它顶点的最短路径,该算法按照最短路径递增的顺序产生一点到其余各顶点的所有最短路径. 对于图G={V,{E}};将 ...

  9. 【转载】最短路径—Dijkstra算法和Floyd算法

    注意:以下代码 只是描述思路,没有测试过!! Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始 ...

随机推荐

  1. C# 使用 SAP NCO3.0 调用SAP RFC函数接口

    最近使用C#调用SAP RFC函数,SAP提供了NCO3.0组件. 下载组件安装,之后引用“sapnco.dll”和“sapnco_utils.dll”两个文件. 在程序中 using SAP.Mid ...

  2. mycat配置日志

    1: 1: MySql Host is blocked because of many connection errors; unblock with 'mysqladmin flush-hosts' ...

  3. POJ 3903 Stock Exchange

    Stock Exchange Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2954   Accepted: 1082 De ...

  4. JavaScript备忘录(2)——闭包

    语句 JavaScript是解释型语言,解释器是按照顺序逐句执行的(除了进行一些少量预处理,如将函数声明提前). 顺序是由流程控制语句来控制的,常用的流程控制语句包括: 条件控制语句:if...els ...

  5. Linux 时钟与计时器

    对 Linux 系统来说,时钟和计时器是两个十分重要的概念.时钟反应的是绝对时间,也可认为是实时时间.计时器反应的则是相对时间,即相对于系统启动后的计时.操作系统内核需要管理运行时间(uptime)和 ...

  6. 【转】在Eclipse里查看Java字节码

    要理解 Java 字节码,比较推荐的方法是自己尝试编写源码对照字节码学习.其中阅读 Java 字节码的工具必不可少.虽然javap可以以可读的形式展示出.class 文件中字节码,但每次改动源码都需调 ...

  7. WINDOWS 2008Server 配置nginx 反向代理服务器

    本案例有用过可行 0.先要在域名官网上面配置域名对应的IP地址,然后要在自己路由器上面将80端口映射到要装nginx服务器的IP地址. 1.从官网上面下载nginx1.6.2   WINDOWS版本的 ...

  8. ruby -- 基础学习(九)filename去除扩展名

         Rails -- filename去除扩展名 简单例子:params[:upload]['preview'].original_filename 的值为templateOne.html.er ...

  9. php -- 获取当月天数及当月第一天及最后一天、上月第一天及最后一天(备忘)

    Learn From :http://www.jxbh.cn/newshow.asp?id=1635&tag=2 //1.获取上个月第一天及最后一天. date('Y-m-01', strto ...

  10. 流行趋势:25款很酷的长阴影效果 LOGO 设计

    长阴影其实就是扩展了对象的投影,感觉是一种光线照射下的影子,通常采用角度为 45 度的投影,给对象添加了一份立体感.长阴影(Long Shadow)概念来自于最新非常流行的扁平化设计(Flat Des ...