在opencv3.0中,提供了一个ml.cpp的文件,这里面全是机器学习的算法,共提供了这么几种:

1、正态贝叶斯:normal Bayessian classifier    我已在另外一篇博文中介绍过:在opencv3中实现机器学习之:利用正态贝叶斯分类

2、K最近邻:k nearest neighbors classifier

3、支持向量机:support vectors machine    请参考我的另外一篇博客:在opencv3中实现机器学习之:利用svm(支持向量机)分类

4、决策树: decision tree

5、ADA Boost:adaboost

6、梯度提升决策树:gradient boosted trees

7、随机森林:random forest

8、人工神经网络:artificial neural networks

9、EM算法:expectation-maximization

这些算法在任何一本机器学习书本上都可以介绍过,他们大致的分类过程都很相似,主要分为三个环节:

一、收集样本数据sampleData

二、训练分类器mode

三、对测试数据testData进行预测

不同的地方就是在opencv中的参数设定,假设训练数据为trainingDataMat,且已经标注好labelsMat。待测数据为testMat.

1、正态贝叶斯

 // 创建贝叶斯分类器
Ptr<NormalBayesClassifier> model=NormalBayesClassifier::create(); // 设置训练数据
Ptr<TrainData> tData =TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat); //训练分类器
model->train(tData);
//预测数据
float response = model->predict(testMat);

2、K最近邻

 Ptr<KNearest> knn = KNearest::create();  //创建knn分类器
knn->setDefaultK(K); //设定k值
knn->setIsClassifier(true);
// 设置训练数据
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
knn->train(tData);
float response = knn->predict(testMat);

3、支持向量机

Ptr<SVM> svm = SVM::create();    //创建一个分类器
svm->setType(SVM::C_SVC); //设置svm类型
svm->setKernel(SVM::POLY); //设置核函数;
svm->setDegree(0.5);
svm->setGamma();
svm->setCoef0();
svm->setNu(0.5);
svm->setP();
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, , 0.01));
svm->setC(C);
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
svm->train(tData);
float response = svm->predict(testMat);

4、决策树: decision tree

Ptr<DTrees> dtree = DTrees::create();  //创建分类器
dtree->setMaxDepth(); //设置最大深度
dtree->setMinSampleCount();
dtree->setUseSurrogates(false);
dtree->setCVFolds(); //交叉验证
dtree->setUse1SERule(false);
dtree->setTruncatePrunedTree(false);
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
dtree->train(tData);
float response = dtree->predict(testMat);

5、ADA Boost:adaboost

 Ptr<Boost> boost = Boost::create();
boost->setBoostType(Boost::DISCRETE);
boost->setWeakCount();
boost->setWeightTrimRate(0.95);
boost->setMaxDepth();
boost->setUseSurrogates(false);
boost->setPriors(Mat());
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
boost->train(tData);
float response = boost->predict(testMat);

6、梯度提升决策树:gradient boosted trees

此算法在opencv3.0中被注释掉了,原因未知,因此此处提供一个老版本的算法。

GBTrees::Params params( GBTrees::DEVIANCE_LOSS, // loss_function_type
, // weak_count
0.1f, // shrinkage
1.0f, // subsample_portion
, // max_depth
false // use_surrogates )
);
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
Ptr<GBTrees> gbtrees = StatModel::train<GBTrees>(tData, params);
float response = gbtrees->predict(testMat);

7、随机森林:random forest

   Ptr<RTrees> rtrees = RTrees::create();
rtrees->setMaxDepth();
rtrees->setMinSampleCount();
rtrees->setRegressionAccuracy(.f);
rtrees->setUseSurrogates(false);
rtrees->setMaxCategories();
rtrees->setPriors(Mat());
rtrees->setCalculateVarImportance(false);
rtrees->setActiveVarCount();
rtrees->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, , ));
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
rtrees->train(tData);
float response = rtrees->predict(testMat);

8、人工神经网络:artificial neural networks

 Ptr<ANN_MLP> ann = ANN_MLP::create();
ann->setLayerSizes(layer_sizes);
ann->setActivationFunction(ANN_MLP::SIGMOID_SYM, , );
ann->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, , FLT_EPSILON));
ann->setTrainMethod(ANN_MLP::BACKPROP, 0.001);
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
ann->train(tData);
float response = ann->predict(testMat);

9、EM算法:expectation-maximization

EM算法与前面的稍微有点不同,它需要创建很多个model,将trainingDataMat分成很多个modelSamples,每个modelSamples训练出一个model

训练核心代码为:

 int nmodels = (int)labelsMat.size();
vector<Ptr<EM> > em_models(nmodels);
Mat modelSamples; for( i = ; i < nmodels; i++ )
{
const int componentCount = ; modelSamples.release();
for (j = ; j < labelsMat.rows; j++)
{
if (labelsMat.at<int>(j,)== i)
modelSamples.push_back(trainingDataMat.row(j));
} // learn models
if( !modelSamples.empty() )
{
Ptr<EM> em = EM::create();
em->setClustersNumber(componentCount);
em->setCovarianceMatrixType(EM::COV_MAT_DIAGONAL);
em->trainEM(modelSamples, noArray(), noArray(), noArray());
em_models[i] = em;
}
}

预测:

 Mat logLikelihoods(, nmodels, CV_64FC1, Scalar(-DBL_MAX));
for( i = ; i < nmodels; i++ )
{
if( !em_models[i].empty() )
logLikelihoods.at<double>(i) = em_models[i]->predict2(testMat, noArray())[];
}

这么多的机器学习算法,在实际用途中照我的理解其实只需要掌握svm算法就可以了。

ANN算法在opencv中也叫多层感知机,因此在训练的时候,需要分多层。

EM算法需要为每一类创建一个model。

其中一些算法的具体代码练习:在opencv3中的机器学习算法练习:对OCR进行分类

在opencv3中的机器学习算法的更多相关文章

  1. opencv3中的机器学习算法之:EM算法

    不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...

  2. 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类

    手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...

  3. 在opencv3中的机器学习算法练习:对OCR进行分类

    OCR (Optical Character Recognition,光学字符识别),我们这个练习就是对OCR英文字母进行识别.得到一张OCR图片后,提取出字符相关的ROI图像,并且大小归一化,整个图 ...

  4. scikit-learn中的机器学习算法封装——kNN

    接前面 https://www.cnblogs.com/Liuyt-61/p/11738399.html 回过头来看这张图,什么是机器学习?就是将训练数据集喂给机器学习算法,在上面kNN算法中就是将特 ...

  5. 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类

    logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...

  6. 在opencv3中实现机器学习之:利用svm(支持向量机)分类

    svm分类算法在opencv3中有了很大的变动,取消了CvSVMParams这个类,因此在参数设定上会有些改变. opencv中的svm分类代码,来源于libsvm. #include "s ...

  7. 在opencv3中实现机器学习之:利用正态贝叶斯分类

    opencv3.0版本中,实现正态贝叶斯分类器(Normal Bayes Classifier)分类实例 #include "stdafx.h" #include "op ...

  8. Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)

    朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...

  9. 简单易学的机器学习算法——基于密度的聚类算法DBSCAN

    一.基于密度的聚类算法的概述     最近在Science上的一篇基于密度的聚类算法<Clustering by fast search and find of density peaks> ...

随机推荐

  1. OC语言-04-OC语言-核心语法

    一.点语法 1> 基本使用 点语法本质上是set方法/get方法的调用 2> 使用注意 若出现在赋值操作符的右边,在执行时会转换成get方法 若出现在赋值操作符的左边,在执行时会转换成se ...

  2. eclipse创建本地maven

    一.下载maven安装包和maven的eclipse插件 apache-maven-3.3.9-bin.zip eclipse-maven-plugin.zip 下载地址:http://pan.bai ...

  3. centos性能监控系列三:监控工具atop详解

    引言 Linux以其稳定性,越来越多地被用作服务器的操作系统(当然,有人会较真地说一句:Linux只是操作系统内核:).但使用了Linux作为底层的操作系统,是否我们就能保证我们的服务做到7*24地稳 ...

  4. JavaScript Patterns 4.6 Immediate Object Initialization

    ( { // here you can define setting values // a.k.a. configuration constants maxwidth : 600, maxheigh ...

  5. 深入剖析 Spring 框架的 BeanFactory

    说到Spring框架,人们往往大谈特谈一些似乎高逼格的东西,比如依赖注入,控制反转,面向切面等等.但是却忘记了最基本的一点,Spring的本质是一个bean工厂(beanFactory)或者说bean ...

  6. ZOJ 3865 Superbot(优先队列--模板)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5477 主要思路:1.从一个点(cur)到它相邻的点(next),所需 ...

  7. listview中OnItemClick方法各个参数的作用

    OnItemClick(AdapterView<?> arg0, View arg1, int arg2, long arg3) 1.arg0,arg2 m_listview.setOnI ...

  8. 《TCP/IP详解 卷一》读书笔记-----TCP超时重传

    1.TCP提供的是可靠传输,它通过接收方发送一个确认报文ACK来提供这种可靠性.但是数据报文和确认报文都可能会丢失,所以TCP会给发出的数据报文设置一个时间,如果超时了则进行重传 2.Karn's A ...

  9. selenium更改readonly属性

    1.用js实现 JavascriptExecutor removeAttribute = (JavascriptExecutor)dr;        //remove readonly attrib ...

  10. 【问题&解决】解决 Android SDK下载和更新失败“Connection to https://dl-ssl.google.com refused”的问题

    缘由: 更新sdk,遇到了更新下载失败问题: Fetching https://dl-ssl.google.com/android/repository/addons_list-2.xmlFetche ...