paper 23 :Kullback–Leibler divergence KL散度(2)
Kullback–Leibler divergence KL散度
In probability theory and information theory, the Kullback–Leibler divergence[1][2][3] (also information divergence,information gain, relative entropy, or KLIC) is a non-symmetric measure of the difference between two probability distributions P and Q. KL measures the expected number of extra bits required to code samples from P when using a code based on Q, rather than using a code based on P. Typically P represents the "true" distribution of data, observations, or a precise calculated theoretical distribution. The measure Q typically represents a theory, model, description, or approximation of P.
Although it is often intuited as a distance metric, the KL divergence is not a true metric – for example, the KL from P to Q is not necessarily the same as the KL from Q to P.
KL divergence is a special case of a broader class of divergences called f-divergences. Originally introduced by Solomon Kullbackand Richard Leibler in 1951 as the directed divergence between two distributions, it is not the same as a divergence incalculus. However, the KL divergence can be derived from the Bregman divergence.
注意P通常指数据集,我们已有的数据集,Q表示理论结果,所以KL divergence 的物理含义就是当用Q来编码P中的采样时,比用P来编码P中的采用需要多用的位数!
KL散度,也有人称为KL距离,但是它并不是严格的距离概念,其不满足三角不等式
KL散度是不对称的,当然,如果希望把它变对称,
Ds(p1, p2) = [D(p1, p2) + D(p2, p1)] / 2
下面是KL散度的离散和连续定义!


注意的一点是p(x) 和q(x)分别是pq两个随机变量的PDF,D(P||Q)是一个数值,而不是一个函数,看下图!
注意:KL Area to be Integrated!
![]()
KL 散度一个很强大的性质:
The Kullback–Leibler divergence is always non-negative,
a result known as Gibbs' inequality, with DKL(P||Q) zero if and only if P = Q.
计算KL散度的时候,注意问题是在稀疏数据集上KL散度计算通常会出现分母为零的情况!
Matlab中的函数:KLDIV给出了两个分布的KL散度
Description
KLDIV Kullback-Leibler or Jensen-Shannon divergence between two distributions.
KLDIV(X,P1,P2) returns the Kullback-Leibler divergence between two distributions specified over the M variable values in vector X. P1 is a length-M vector of probabilities representing distribution 1, and P2 is a length-M vector of probabilities representing distribution 2. Thus, the probability of value X(i) is P1(i) for distribution 1 and P2(i) for distribution 2. The Kullback-Leibler divergence is given by:
KL(P1(x),P2(x)) = sum[P1(x).log(P1(x)/P2(x))]
If X contains duplicate values, there will be an warning message, and these values will be treated as distinct values. (I.e., the actual values do not enter into the computation, but the probabilities for the two duplicate values will be considered as probabilities corresponding to two unique values.) The elements of probability vectors P1 and P2 must each sum to 1 +/- .00001.
A "log of zero" warning will be thrown for zero-valued probabilities. Handle this however you wish. Adding 'eps' or some other small value to all probabilities seems reasonable. (Renormalize if necessary.)
KLDIV(X,P1,P2,'sym') returns a symmetric variant of the Kullback-Leibler divergence, given by [KL(P1,P2)+KL(P2,P1)]/2. See Johnson and Sinanovic (2001).
KLDIV(X,P1,P2,'js') returns the Jensen-Shannon divergence, given by [KL(P1,Q)+KL(P2,Q)]/2, where Q = (P1+P2)/2. See the Wikipedia article for "Kullback–Leibler divergence". This is equal to 1/2 the so-called "Jeffrey divergence." See Rubner et al. (2000).
EXAMPLE: Let the event set and probability sets be as follow:
X = [1 2 3 3 4]';
P1 = ones(5,1)/5;
P2 = [0 0 .5 .2 .3]' + eps;
Note that the event set here has duplicate values (two 3's). These will be treated as DISTINCT events by KLDIV. If you want these to be treated as the SAME event, you will need to collapse their probabilities together before running KLDIV. One way to do this is to use UNIQUE to find the set of unique events, and then iterate over that set, summing probabilities for each instance of each unique event. Here, we just leave the duplicate values to be treated independently (the default):
KL = kldiv(X,P1,P2);
KL =
19.4899
Note also that we avoided the log-of-zero warning by adding 'eps' to all probability values in P2. We didn't need to renormalize because we're still within the sum-to-one tolerance.
REFERENCES:
1) Cover, T.M. and J.A. Thomas. "Elements of Information Theory," Wiley, 1991.
2) Johnson, D.H. and S. Sinanovic. "Symmetrizing the Kullback-Leibler distance." IEEE Transactions on Information Theory (Submitted).
3) Rubner, Y., Tomasi, C., and Guibas, L. J., 2000. "The Earth Mover's distance as a metric for image retrieval." International Journal of Computer Vision, 40(2): 99-121.
4) <a href="http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence">Kullback–Leiblerdivergence</a>. Wikipedia, The Free Encyclopedia.
paper 23 :Kullback–Leibler divergence KL散度(2)的更多相关文章
- KL散度(Kullback–Leibler divergence)
KL散度是度量两个分布之间差异的函数.在各种变分方法中,都有它的身影. 转自:https://zhuanlan.zhihu.com/p/22464760 一维高斯分布的KL散度 多维高斯分布的KL散度 ...
- paper 22:kl-divergence(KL散度)实现代码
这个函数很重要: function KL = kldiv(varValue,pVect1,pVect2,varargin) %KLDIV Kullback-Leibler or Jensen-Shan ...
- 【原】浅谈KL散度(相对熵)在用户画像中的应用
最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Ku ...
- 浅谈KL散度
一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence) ...
- ELBO 与 KL散度
浅谈KL散度 一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information dive ...
- 交叉熵cross entropy和相对熵(kl散度)
交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异. 相对熵(relativ ...
- KL散度的理解(GAN网络的优化)
原文地址Count Bayesie 这篇文章是博客Count Bayesie上的文章Kullback-Leibler Divergence Explained 的学习笔记,原文对 KL散度 的概念诠释 ...
- KL散度与JS散度
1.KL散度 KL散度( Kullback–Leibler divergence)是描述两个概率分布P和Q差异的一种测度.对于两个概率分布P.Q,二者越相似,KL散度越小. KL散度的性质:P表示真实 ...
- KL散度非负性证明
1 KL散度 KL散度(Kullback–Leibler divergence) 定义如下: $D_{K L}=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \t ...
随机推荐
- 自动将每日的日志增量导入到hive中
一:大纲介绍 1.导入方式 load data local inpath 'local_file_path' into table tbname partition (date='',hour='') ...
- java分形树
import java.awt.*; import java.awt.event.*; import java.util.Random; import javax.swing.*; /** * * @ ...
- JS实现页面回到顶部效果
[代码] <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...
- Gulp自动化工具之图片压缩
一.安装node https://nodejs.org/download/ 根据需要选择对应的版本 安装好了之后可以通过node -v参看一下版本 node -v 二.安装gulp npm insta ...
- LeetCode Longest Substring with At Most Two Distinct Characters
原题链接在这里:https://leetcode.com/problems/longest-substring-with-at-most-two-distinct-characters/ 题目: Gi ...
- Interview Sort Function
QuickSort Java Code: import java.util.*; public class quickSort{ public static void main(String [] a ...
- (转)linux运行tomcat时JRE_HOME显示不对怎么办?
PS:以前也没出现这些问题,重装了一下系统,感觉什么都让我撞上了.Using CATALINA_BASE: /usr/share/tomcat7Using CATALINA_HOME: /us ...
- Java静态代码分析工具——FindBugs插件的安装与使用
1 什么是FindBugs FindBugs 是一个静态分析工具,它检查类或者 JAR 文件,将字节码与一组缺陷模式进行对比以发现可能的问题.有了静态分析工具,就可以在不实际运行程序的情况对软件进行分 ...
- CAD出图
今天帮着客户输出图纸,用打印命令,设置打印参数,选择dwg到pdf打印机.设置图纸大小等参数 CAD满图纸输出 按照比例尺输出 plot,一般图纸绘制是已经有一个比例尺,所以按照1:1输出,如果图纸是 ...
- 从电商平台促销活动看电商app开发趋势
据亿合科技小编了解到:尽管各大电商平台都进入了品质和品牌时代,但对于消费者来说,低价依然是一个有吸引力的因素.尼尔森<网络购物者趋势研究>报告显示,2016年价格敏感型购物者的比例从15% ...
