hdu1588 矩阵快速幂
//看了很多的博客 后来队友指点才懂
//sum=f(g(0))+f(g(1))+....
//sum=A^(b-1)*|...|....
//要将b-1换,防止出现b=0时有负一,用A^b代替,取下面的即可
//这样问题成了 sum=A^b(A+A^(2k)+A^(3k)+...+A^(k(n-1)));
//令B=A^k次,就简单了。
/*
主要要求1+A+A^2+A^3+...+A^(n-1)次方
| A A | | A^2 A^2+A | | A^(k-1) A^(k-1)+A^(k-2)+A^(k-3)... |
令B= | | B^2=| | 这样可以得到 B^(n-1)=| |
| 0 1 | | 0 1 | | 0 1 |
*/
#include<stdio.h>
#include<string.h>
#define maxn 30
#define ll __int64
ll n,mod;
struct Mat
{
ll mat[maxn][maxn];
};
Mat cal1(Mat a,Mat b,int nn)//矩阵乘法
{
Mat c;
memset(c.mat,,sizeof(c.mat));
int i,j,k;
for(i=;i<nn;i++)
for(j=;j<nn;j++)
for(k=;k<nn;k++)
{
c.mat[i][j]+=((a.mat[i][k]*b.mat[k][j])%mod);
c.mat[i][j]%=mod;
}
return c;
}
Mat cal2(Mat a,ll k,int nn)//矩阵幂
{
int i,j;
Mat c;
for(i=;i<nn;i++)
for(j=;j<nn;j++)
if(i==j)c.mat[i][j]=;
else c.mat[i][j]=;
while(k)
{
if(k&)
c=cal1(c,a,nn);
k=k>>;
a=cal1(a,a,nn);
}
return c;
}
Mat A,B,S;
void initA()
{
A.mat[][]=;
A.mat[][]=;
A.mat[][]=;
A.mat[][]=;
}
void initB()
{
int i,j;
for(i=;i<;i++)
for(j=;j<;j++)
{
B.mat[i][j]=A.mat[i][j];
B.mat[i][j+]=A.mat[i][j];
}
for(i=;i<;i++)
for(j=;j<;j++)
B.mat[i][j]=;
for(i=;i<;i++)
for(j=;j<;j++)
if(i==j)
B.mat[i][j]=;
else B.mat[i][j]=;
}
Mat getmat()
{
int i,j;
Mat c;
for(i=;i<;i++)
for(j=;j<;j++)
c.mat[i][j-]=B.mat[i][j];
for(i=;i<;i++)
for(j=;j<;j++)
if(i==j)
c.mat[i][j]+=;
return c;
}
int main()
{
ll i,j,k,b;
while(scanf("%I64d %I64d %I64d %I64d",&k,&b,&n,&mod)!=EOF)
{
initA();
S=cal2(A,b,);
A=cal2(A,k,);
initB();
B=cal2(B,n-,);
Mat temp=getmat();
S=cal1(S,temp,);
/*for(i=0;i<2;i++)
{
for(j=0;j<2;j++)
printf("%I64d ",S.mat[i][j]);
printf("\n");
}*/
printf("%d\n",S.mat[][]); }
}
hdu1588 矩阵快速幂的更多相关文章
- 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...
- 51nod 算法马拉松18 B 非010串 矩阵快速幂
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模) ...
- 51nod 1113 矩阵快速幂
题目链接:51nod 1113 矩阵快速幂 模板题,学习下. #include<cstdio> #include<cmath> #include<cstring> ...
- 【66测试20161115】【树】【DP_LIS】【SPFA】【同余最短路】【递推】【矩阵快速幂】
还有3天,今天考试又崩了.状态还没有调整过来... 第一题:小L的二叉树 勤奋又善于思考的小L接触了信息学竞赛,开始的学习十分顺利.但是,小L对数据结构的掌握实在十分渣渣.所以,小L当时卡在了二叉树. ...
- HDU5950(矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:f(n) = f(n-1) + 2*f(n-2) + n^4,f(1) = a , f(2 ...
- 51nod 1126 矩阵快速幂 水
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
- hdu2604(递推,矩阵快速幂)
题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS: ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- hdu4965 Fast Matrix Calculation (矩阵快速幂 结合律
http://acm.hdu.edu.cn/showproblem.php?pid=4965 2014 Multi-University Training Contest 9 1006 Fast Ma ...
随机推荐
- windows下如何安装jira
---恢复内容开始--- 准备工作: 1.安装jdk,详细不在介绍 2.建立jira帐号:https://id.atlassian.com/login?application=mac&cont ...
- 【Android UI设计与开发】3.引导界面(三)实现应用程序只启动一次引导界面
大部分的引导界面基本上都是千篇一律的,只要熟练掌握了一个,基本上也就没什么好说的了,要想实现应用程序只启动一次引导界面这样的效果,只要使用SharedPreferences类,就会让程序变的非常简单, ...
- ZBrush中的纹理-水手该怎样进行绘制
如下是一张使用ZBrush3D图形绘制软件绘制的栩栩如生的水手图片,那么有人要问了,如何创建水手渲染的皮肤纹理呢?接下来,小编将教大家学习如何创建皮肤颜色,顺便说一下,这里所选取的颜色仅仅是在ZBru ...
- codeforces 711A A. Bus to Udayland(水题)
题目链接: A. Bus to Udayland 题意: 找一对空位坐下来,水; 思路: AC代码: #include <iostream> #include <cstdio> ...
- ajax请求json数据案例
今天有这样一个需求,点击六个大洲,出现对应的一些请求信息,展示在下面,请求请求过后,第二次点击就无需请求.如图所示:点击北美洲下面出现请求的一些数据 html代码结构: <div class=& ...
- XUtils===XUtils3框架的基本使用方法
转载自:http://blog.csdn.NET/a1002450926/article/details/50341173 今天给大家带来XUtils3的基本介绍,本文章的案例都是基于XUtils3的 ...
- Android组件系列----ContentProvider内容提供者
[声明] 欢迎转载,但请保留文章原始出处→_→ 生命壹号:http://www.cnblogs.com/smyhvae/ 文章来源:http://www.cnblogs.com/smyhvae/p/4 ...
- window.lacation.replace
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8&quo ...
- C语言 文件操作11--文件函数再讲 fseek()和ftell()
//文件函数再讲 //fseek(),ftell(), #define _CRT_SECURE_NO_WARNINGS #include<stdio.h> #include<stdl ...
- C语言 预处理一(文件包含--#include)
//预处理命令不需要在结束末尾加":" //#inlude可以包含任意类型的文件 //#inlude 将一个源文件的全部内容包含到另一个源文件中,成为它的一个部分,文件包含的一般格 ...