Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover of a rectangular region.

Each rectangle is represented as a bottom-left point and a top-right point. For example, a unit square is represented as [1,1,2,2]. (coordinate of bottom-left point is (1, 1) and top-right point is (2, 2)).

Example 1:

rectangles = [
[1,1,3,3],
[3,1,4,2],
[3,2,4,4],
[1,3,2,4],
[2,3,3,4]
] Return true. All 5 rectangles together form an exact cover of a rectangular region. Example 2:
rectangles = [
[1,1,2,3],
[1,3,2,4],
[3,1,4,2],
[3,2,4,4]
] Return false. Because there is a gap between the two rectangular regions. Example 3:
rectangles = [
[1,1,3,3],
[3,1,4,2],
[1,3,2,4],
[3,2,4,4]
] Return false. Because there is a gap in the top center. Example 4:

rectangles = [
[1,1,3,3],
[3,1,4,2],
[1,3,2,4],
[2,2,4,4]
] Return false. Because two of the rectangles overlap with each other.

Refer to https://discuss.leetcode.com/topic/56052/really-easy-understanding-solution-o-n-java

and   https://discuss.leetcode.com/topic/55923/o-n-solution-by-counting-corners-with-detailed-explaination

Idea

Consider how the corners of all rectangles appear in the large rectangle if there's a perfect rectangular cover.
Rule1: The local shape of the corner has to follow one of the three following patterns

    • Corner of the large rectangle (blue): it occurs only once among all rectangles
    • T-junctions (green): it occurs twice among all rectangles
    • Cross (red): it occurs four times among all rectangles

For each point being a corner of any rectangle, it should appear even times except the 4 corners of the large rectangle. So we can put those points into a hash map and remove them if they appear one more time.

At the end, we should only get 4 points.

Rule2:  the large rectangle area should be equal to the sum of small rectangles

 public class Solution {
public boolean isRectangleCover(int[][] rectangles) {
if (rectangles==null || rectangles.length==0 || rectangles[0].length==0) return false;
int subrecAreaSum = 0; //sum of subrectangle's area
int x1 = Integer.MAX_VALUE; //large rectangle bottom left x-axis
int y1 = Integer.MAX_VALUE; //large rectangle bottom left y-axis
int x2 = Integer.MIN_VALUE; //large rectangle top right x-axis
int y2 = Integer.MIN_VALUE; //large rectangle top right y-axis HashSet<String> set = new HashSet<String>(); // store points for(int[] rec : rectangles) {
//check if it has large rectangle's 4 points
x1 = Math.min(x1, rec[0]);
y1 = Math.min(y1, rec[1]);
x2 = Math.max(x2, rec[2]);
y2 = Math.max(y2, rec[3]); //calculate sum of subrectangles
subrecAreaSum += (rec[2]-rec[0]) * (rec[3] - rec[1]); //store this rectangle's 4 points into hashSet
String p1 = Integer.toString(rec[0]) + "" + Integer.toString(rec[1]);
String p2 = Integer.toString(rec[0]) + "" + Integer.toString(rec[3]);
String p3 = Integer.toString(rec[2]) + "" + Integer.toString(rec[1]);
String p4 = Integer.toString(rec[2]) + "" + Integer.toString(rec[3]); if (!set.add(p1)) set.remove(p1);
if (!set.add(p2)) set.remove(p2);
if (!set.add(p3)) set.remove(p3);
if (!set.add(p4)) set.remove(p4);
} if (set.size()!=4 || !set.contains(x1+""+y1) || !set.contains(x1+""+y2) || !set.contains(x2+""+y1) || !set.contains(x2+""+y2))
return false;
return subrecAreaSum == (x2-x1) * (y2-y1);
}
}

Leetcode: Perfect Rectangle的更多相关文章

  1. [LeetCode] Perfect Rectangle 完美矩形

    Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover o ...

  2. leetcode Maximal Rectangle 单调栈

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4052721.html 题目链接:leetcode Maximal Rectangle 单调栈 ...

  3. leetcode Largest Rectangle in Histogram 单调栈

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4052343.html 题目链接 leetcode Largest Rectangle in ...

  4. [LeetCode] Largest Rectangle in Histogram O(n) 解法详析, Maximal Rectangle

    Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...

  5. [LeetCode] Smallest Rectangle Enclosing Black Pixels 包含黑像素的最小矩阵

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  6. [LeetCode] Perfect Squares 完全平方数

    Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...

  7. [LeetCode] Maximal Rectangle 最大矩形

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...

  8. [LeetCode] Largest Rectangle in Histogram 直方图中最大的矩形

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  9. LeetCode: Largest Rectangle in Histogram(直方图最大面积)

    http://blog.csdn.net/abcbc/article/details/8943485 具体的题目描述为: Given n non-negative integers represent ...

随机推荐

  1. ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

    https://en.wikipedia.org/wiki/Base64 The Base64 index table: Value Char   Value Char   Value Char   ...

  2. delphi 最全日期格式_DateUtils时间单元说明

    DateUtils时间单元说明 CompareDate 函数 比较两个日期时间值日期部分的大小 CompareDateTime 函数 比较两个日期时间值的大小 CompareTime 函数 比较两个日 ...

  3. db link的查看创建与删除(转)

    1.查看dblink select owner,object_name from dba_objects where object_type='DATABASE LINK'; 或者 select * ...

  4. 怎么样用opencv将彩色图片转化成像素值只有0和255的灰度图?

      分类: OpenCV [Q1]怎么样用opencv将彩色图片转化成像素值只有0和255的灰度图? 进行灰度化,IplImage* pImg = cvLoadImage( "C:\\1.b ...

  5. C# 操作Cookie类

    1.Cookie操作类 using System; using System.Data; using System.Configuration;using System.Web;using Syste ...

  6. 关于使用注解出现BeanCreationException或者NameNotFoundException的解决方法

    网上大部分解决方法是修改配置文件,但是本人修改后发现还是报错,只能耐着头皮继续看下去,最后发现是path出错,注意web.xml中的<resource-ref>的<res-ref-n ...

  7. C#中Dynamic关键字

    dynamic关键字和动态语言运行时(DLR)是.Net 4.0中新增的功能. 什么是"动态"? 编程语言有时可以划分为静态类型化语言和动态类型化语言.C#和Java经常被认为是静 ...

  8. transform: translateY(-50%) 实现元素垂直居中效果

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  9. ArcGIS API for Silverlight 点沿着线流动

    原文:ArcGIS API for Silverlight 点沿着线流动 概述 前段时间做了一个项目,要求是有一些电力输送线,电力输送线或者石油管道都是有流动方向的,用户想做一个动态效果来模拟电力的输 ...

  10. JQuery 方法简写

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...