Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover of a rectangular region.

Each rectangle is represented as a bottom-left point and a top-right point. For example, a unit square is represented as [1,1,2,2]. (coordinate of bottom-left point is (1, 1) and top-right point is (2, 2)).

Example 1:

rectangles = [
[1,1,3,3],
[3,1,4,2],
[3,2,4,4],
[1,3,2,4],
[2,3,3,4]
] Return true. All 5 rectangles together form an exact cover of a rectangular region. Example 2:
rectangles = [
[1,1,2,3],
[1,3,2,4],
[3,1,4,2],
[3,2,4,4]
] Return false. Because there is a gap between the two rectangular regions. Example 3:
rectangles = [
[1,1,3,3],
[3,1,4,2],
[1,3,2,4],
[3,2,4,4]
] Return false. Because there is a gap in the top center. Example 4:

rectangles = [
[1,1,3,3],
[3,1,4,2],
[1,3,2,4],
[2,2,4,4]
] Return false. Because two of the rectangles overlap with each other.

Refer to https://discuss.leetcode.com/topic/56052/really-easy-understanding-solution-o-n-java

and   https://discuss.leetcode.com/topic/55923/o-n-solution-by-counting-corners-with-detailed-explaination

Idea

Consider how the corners of all rectangles appear in the large rectangle if there's a perfect rectangular cover.
Rule1: The local shape of the corner has to follow one of the three following patterns

    • Corner of the large rectangle (blue): it occurs only once among all rectangles
    • T-junctions (green): it occurs twice among all rectangles
    • Cross (red): it occurs four times among all rectangles

For each point being a corner of any rectangle, it should appear even times except the 4 corners of the large rectangle. So we can put those points into a hash map and remove them if they appear one more time.

At the end, we should only get 4 points.

Rule2:  the large rectangle area should be equal to the sum of small rectangles

 public class Solution {
public boolean isRectangleCover(int[][] rectangles) {
if (rectangles==null || rectangles.length==0 || rectangles[0].length==0) return false;
int subrecAreaSum = 0; //sum of subrectangle's area
int x1 = Integer.MAX_VALUE; //large rectangle bottom left x-axis
int y1 = Integer.MAX_VALUE; //large rectangle bottom left y-axis
int x2 = Integer.MIN_VALUE; //large rectangle top right x-axis
int y2 = Integer.MIN_VALUE; //large rectangle top right y-axis HashSet<String> set = new HashSet<String>(); // store points for(int[] rec : rectangles) {
//check if it has large rectangle's 4 points
x1 = Math.min(x1, rec[0]);
y1 = Math.min(y1, rec[1]);
x2 = Math.max(x2, rec[2]);
y2 = Math.max(y2, rec[3]); //calculate sum of subrectangles
subrecAreaSum += (rec[2]-rec[0]) * (rec[3] - rec[1]); //store this rectangle's 4 points into hashSet
String p1 = Integer.toString(rec[0]) + "" + Integer.toString(rec[1]);
String p2 = Integer.toString(rec[0]) + "" + Integer.toString(rec[3]);
String p3 = Integer.toString(rec[2]) + "" + Integer.toString(rec[1]);
String p4 = Integer.toString(rec[2]) + "" + Integer.toString(rec[3]); if (!set.add(p1)) set.remove(p1);
if (!set.add(p2)) set.remove(p2);
if (!set.add(p3)) set.remove(p3);
if (!set.add(p4)) set.remove(p4);
} if (set.size()!=4 || !set.contains(x1+""+y1) || !set.contains(x1+""+y2) || !set.contains(x2+""+y1) || !set.contains(x2+""+y2))
return false;
return subrecAreaSum == (x2-x1) * (y2-y1);
}
}

Leetcode: Perfect Rectangle的更多相关文章

  1. [LeetCode] Perfect Rectangle 完美矩形

    Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover o ...

  2. leetcode Maximal Rectangle 单调栈

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4052721.html 题目链接:leetcode Maximal Rectangle 单调栈 ...

  3. leetcode Largest Rectangle in Histogram 单调栈

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4052343.html 题目链接 leetcode Largest Rectangle in ...

  4. [LeetCode] Largest Rectangle in Histogram O(n) 解法详析, Maximal Rectangle

    Largest Rectangle in Histogram Given n non-negative integers representing the histogram's bar height ...

  5. [LeetCode] Smallest Rectangle Enclosing Black Pixels 包含黑像素的最小矩阵

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  6. [LeetCode] Perfect Squares 完全平方数

    Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 1 ...

  7. [LeetCode] Maximal Rectangle 最大矩形

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...

  8. [LeetCode] Largest Rectangle in Histogram 直方图中最大的矩形

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

  9. LeetCode: Largest Rectangle in Histogram(直方图最大面积)

    http://blog.csdn.net/abcbc/article/details/8943485 具体的题目描述为: Given n non-negative integers represent ...

随机推荐

  1. 256 terabytes random-access memory

    Computer Systems A Programmer's Perspective Second Edition As we will discuss, the extension of IA32 ...

  2. Flink DataStream API Programming Guide

    Example Program The following program is a complete, working example of streaming window word count ...

  3. jboss4.2.3 SSL配置 + 生成数字签名

    一.生成数字签名 1. 生成JKS文件 keytool -genkey -keyalg RSA -alias jbosskey -keystore jbosskey.jks 在win7系统中,该文件的 ...

  4. html之内联元素与块状元素;

    html之内联元素与块状元素 一.html之内联元素与块状元素 1.块状元素一般比较霸道,它排斥与其他元素位于同一行内.比如div,并且width与height对它起作用. 2.内联元素只能容纳文本或 ...

  5. AOP 底层技术比较

    表 1. AOP 底层技术比较 AOP 底层技术 功能 性能 面向接口编程 编程难度 直接改写 class 文件 完全控制类 无明显性能代价 不要求 高,要求对 class 文件结构和 Java 字节 ...

  6. ios证书

    内容提要: 安装app时提示 “无法下载应用,此时无法安装“XXX””.我遇到过多次是由于ios的app出现证书问题.本篇文章讲解用ios证书制作过程,以及每个步骤的解释. 正文: Xcode签名至少 ...

  7. Shell Script-读取配置文件

    需求 有时候在shell script里面需要一些执行,如果放在程序里面不便于统一管理,并且每一次修改路径都要去script里面改好麻烦,所以统一把路径放在配置文件中方便管理. 问题 如何读取相对应的 ...

  8. JavaScript:基础表单验证

    在用户填写表单的过程之中,往往需要编写一堆的验证操作,这样就可以保证提交的数据时正确的.那么下面就模拟表单验证的处理操作完成. 如果要想进行验证,首先针对于输入的数据来进行一个验证处理. 1.定义一个 ...

  9. Which Python memory profiler is recommended

    http://stackoverflow.com/questions/110259/which-Python-memory-profiler-is-recommended/110826#110826

  10. NYU Hand Pose Dataset

    http://cims.nyu.edu/~tompson/NYU_Hand_Pose_Dataset.htm#overview