Market


Time Limit: 2 Seconds      Memory Limit: 65536 KB

There's a fruit market in Byteland. The salesmen there only sell apples.

There are n salesmen in the fruit market and the i-th salesman will sell at most wi apples. Every salesman has an immediate manager pi except one salesman who is the boss of the market. A salesman A is said to be the superior of another salesman B if at least one of the followings is true:

  • Salesman A is the immediate manager of salesman B.
  • Salesman B has an immediate manager salesman C such that salesman A is the superior of salesman C.

The market will not have a managerial cycle. That is, there will not exist a salesman who is the superior of his/her own immediate manager.

We will call salesman x a subordinate of another salesman y, if either y is an immediate manager of x, or the immediate manager of x is a subordinate to salesman y. In particular, subordinates of the boss are all other salesmen of the market. Let the degree of the boss be 0. Then if the degree of i-th salesman is k, the immediate subordinates of i-th salesman will have degree k + 1.

Today, m buyers come to market for apples. The i-th buyer will buy at most ci apples only from the xi-th salesman and his subordinates whose degree is no larger than xi-th salesman's degree plus di.

The boss wants to know how many apples can be sold in salesmen's best effort (i.e. the maximum number).

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers n and m (1 ≤ nm ≤ 10000) — the number of salesmen and the number of buyers.

The second line contains n integers w1w2, ..., wn (1 ≤ wi ≤ 105). Every wi denotes the number of apples that i-th salesman can sell.

The next line contains n integers pi (1 ≤ pi ≤ n or pi = -1). Every pi denotes the immediate manager for the i-th salesman. If pi is -1, that means that the i-th salesman does not have an immediate manager.

Each of the next m lines contains three integers cixi and di (1 ≤ ci ≤ 105, 1 ≤ xi ≤ n, 0 ≤ di ≤ n) — the information of i-th buyer.

It is guaranteed that the total number of salesmen in the input doesn't exceed 105, and the total number of buyers also doesn't exceed 105. The number of test cases in the input doesn't exceed 500.

Output

For each test case, output a single integer denoting the maximum number of apples can be sold.

Sample Input

1
4 2
1 2 3 4
-1 1 2 3
3 2 1
5 1 1

Sample Output

6

Author: LIN, Xi

题意:给出一棵n个点的树,然后每个点有个权值,给出m次操作,每次操作让你从第i个点以及其下面d层的所有点中   最多减去c的权值(可以分开减),问最后最多划去多少权值?

分析:这题明显就是贪心,想啊想啊就容易想到平衡术合并维护,贪心优先划掉层数较大的权值

就是每个点都有一个平衡树,代表这个点为根的子树已经处理完下面的操作了之后,所有有权值的点,

然后把这个平衡树向上启发式合并

整个过程是从下往上的

c++可以使用set做这题,pascal就悲剧了。

 #include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
using namespace std;
typedef long long LL;
typedef double DB;
#define For(i, s, t) for(int i = (s); i <= (t); i++)
#define Ford(i, s, t) for(int i = (s); i >= (t); i--)
#define Rep(i, t) for(int i = (0); i < (t); i++)
#define Repn(i, t) for(int i = ((t)-1); i >= (0); i--)
#define rep(i, x, t) for(int i = (x); i < (t); i++)
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define ft first
#define sd second
#define mk make_pair
inline void SetIO(string Name) {
string Input = Name+".in",
Output = Name+".out";
freopen(Input.c_str(), "r", stdin),
freopen(Output.c_str(), "w", stdout);
} inline int Getint() {
int Ret = ;
bool Flag = ;
char Ch = ' ';
while(!(Ch >= '' && Ch <= '')) {
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '') {
Ret = Ret*+Ch-'';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
int n, m, Arr[N];
int Fa[N], First[N], To[N], Next[N], Tot;
int Root, Que[N], Degree[N], Ans;
typedef pair<int, int> II;
vector<II> Salesman[N];
set<II> Splay[N];
int Set[N]; inline void Insert(int u, int v) {
Tot++;
To[Tot] = v, Next[Tot] = First[u];
First[u] = Tot;
} inline void Init() {
For(i, , n) {
Splay[i].clear(), Salesman[i].clear();
Set[i] = i, First[i] = ;
}
Tot = ;
} inline void Solve(); inline void Input() {
int Test;
//scanf("%d", &Test);
Test = Getint();
while(Test--) {
//scanf("%d%d", &n, &m);
n = Getint();
m = Getint();
For(i, , n) Arr[i] = Getint(); Init(); Tot = ;
For(i, , n) {
Fa[i] = Getint();
if(Fa[i] != -) Insert(Fa[i], i);
else Root = i;
} For(i, , m) {
int C, x, D;
C = Getint();
x = Getint();
D = Getint();
Salesman[x].pub(mk(C, D));
} Solve();
}
} inline void Bfs(int Start) {
static int Head, Tail;
Head = Tail = , Que[] = Start, Degree[Start] = ;
while(Head <= Tail) {
int u = Que[Head++];
for(int Tab = First[u], v; Tab; Tab = Next[Tab]) {
v = To[Tab];
Degree[v] = Degree[u]+, Que[++Tail] = v;
}
}
} inline void Merge(int x, int y) {
for(set<II>::iterator It = Splay[Set[y]].begin(); It != Splay[Set[y]].end(); It++)
Splay[Set[x]].insert(*It);
} inline int Work(int x) {
int Ret = ;
Splay[Set[x]].insert(mk(Degree[x], x)); int Len = sz(Salesman[x]), Size = sz(Splay[Set[x]]);
set<II>::iterator It;
Rep(i, Len) {
int Buy = Salesman[x][i].ft, D = Salesman[x][i].sd, T;
while(Buy && Size) {
It = Splay[Set[x]].upper_bound(mk(Degree[x]+D, INF));
if(It == Splay[Set[x]].begin()) break;
It--;
T = min(Arr[It->sd], Buy);
Arr[It->sd] -= T, Buy -= T;
if(Arr[It->sd] == ) {
Splay[Set[x]].erase(It);
Size--;
}
}
Ret += Salesman[x][i].ft-Buy;
} if(Fa[x] != -) {
Size = sz(Splay[Set[x]]);
int FaSize = sz(Splay[Set[Fa[x]]]);
if(FaSize < Size) swap(Set[x], Set[Fa[x]]);
Merge(Fa[x], x);
} return Ret;
} inline void Solve() {
Bfs(Root); Ans = ;
Ford(i, n, )
Ans += Work(Que[i]); printf("%d\n", Ans);
} int main() {
SetIO("H");
Input();
//Solve();
return ;
}

ZOJ 3910 Market ZOJ Monthly, October 2015 - H的更多相关文章

  1. ZOJ 3913 Bob wants to pour water ZOJ Monthly, October 2015 - H

    Bob wants to pour water Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge There i ...

  2. 思维+multiset ZOJ Monthly, July 2015 - H Twelves Monkeys

    题目传送门 /* 题意:n个时刻点,m次时光穿梭,告诉的起点和终点,q次询问,每次询问t时刻t之前有多少时刻点是可以通过两种不同的路径到达 思维:对于当前p时间,从现在到未来穿越到过去的是有效的值,排 ...

  3. ZOJ 3910 Market

    Market Time Limit: 2 Seconds      Memory Limit: 65536 KB There's a fruit market in Byteland. The sal ...

  4. 143 - ZOJ Monthly, October 2015 I Prime Query 线段树

    Prime Query Time Limit: 1 Second      Memory Limit: 196608 KB You are given a simple task. Given a s ...

  5. ZOJ 3911 Prime Query ZOJ Monthly, October 2015 - I

    Prime Query Time Limit: 1 Second      Memory Limit: 196608 KB You are given a simple task. Given a s ...

  6. ZOJ 3908 Number Game ZOJ Monthly, October 2015 - F

    Number Game Time Limit: 2 Seconds      Memory Limit: 65536 KB The bored Bob is playing a number game ...

  7. ZOJ 3905 Cake ZOJ Monthly, October 2015 - C

    Cake Time Limit: 4 Seconds      Memory Limit: 65536 KB Alice and Bob like eating cake very much. One ...

  8. ZOJ 3903 Ant ZOJ Monthly, October 2015 - A

    Ant Time Limit: 1 Second      Memory Limit: 32768 KB There is an ant named Alice. Alice likes going ...

  9. Twelves Monkeys (multiset解法 141 - ZOJ Monthly, July 2015 - H)

    Twelves Monkeys Time Limit: 5 Seconds      Memory Limit: 32768 KB James Cole is a convicted criminal ...

随机推荐

  1. [Effective JavaScript 笔记]第53条:保持一致的约定

    对于api使用者来说,你所使用的命名和函数签名是最能产生普遍影响的决策.这些约定很重要具有巨大的影响力.它建立了基本的词汇和使用它们的应用程序的惯用法.库的使用者必须学会阅读和使用这些.一致的约定可以 ...

  2. 诠释Linux中『一切都是文件』概念和相应的文件类型

    导读 在 Unix 和它衍生的比如 Linux 系统中,一切都可以看做文件.虽然它仅仅只是一个泛泛的概念,但这是事实.如果有不是文件的,那它一定是正运行的进程. 要理解这点,可以举个例子,您的根目录( ...

  3. Insertion Sort List

    对链表进行插入排序,比对数组排序麻烦一点. ListNode *insertSortList(ListNode *head) { ListNode dummy(-); for (ListNode *c ...

  4. 《OpenCV入门》(三)

    这部分主要讲形态学的,回头把代码跑跑再来说下代码的感受:http://blog.csdn.net/poem_qianmo/article/details/24599073

  5. SHSEE 备战最后十(四)天日记

    努力. Day -1 看书.睡觉. Day 0 上午考试.语文纯RP题跪.理总不错. 下午上课,各种神. Day 1 上午下午讲课...Day 0成绩出来才#17.... Day 2 考试..这次题目 ...

  6. localResizeIMG

    http://think2011.net/localResizeIMG/test/ 演示一下 自己试试 点我直接进入演示页面 说明 在客户端压缩好要上传的图片可以节省带宽更快的发送给后端,特别适合在移 ...

  7. awk内置字符串函数 awk 格式化输出

    i249 ~ # ps -efl|head -1|awk '$2~/S/{print $2}'Si249 ~ # ps -efl|awk '$2~/S/{print $2}'SSSS printf - ...

  8. Launchpad添加openPGP keys

    转自: https://help.ubuntu.com/community/GnuPrivacyGuardHowto mac下: http://notes.jerzygangi.com/the-bes ...

  9. 安装mac os x时about a second remaining解决方法

    转自: http://www.hongkiat.com/blog/clean-install-mavericks/ During the installation process, you may e ...

  10. 【leetcode】Subsets

    Subsets Given a set of distinct integers, S, return all possible subsets. Note: Elements in a subset ...