R Graphics Cookbook 第3章 – Bar Graphs
3.1 基本条形图
library(ggplot2)
library(gcookbook)
pg_mean #这是用到的数据
group weight
1 ctrl 5.032
2 trt1 4.661
3 trt2 5.526
ggplot(pg_mean, aes(x=group, y=weight)) + geom_bar(stat="identity")

x轴是连续变量还是因子,画出的图有所不同,这里的group是因子。
str(pg_mean)
'data.frame': 3 obs. of 2 variables:
$ group : Factor w/ 3 levels "ctrl","trt1",..: 1 2 3 #可以看出group是因子
$ weight: num 5.03 4.66 5.53
用fill设置填充色,用color设置边框颜色
ggplot(pg_mean, aes(x=group, y=weight)) + geom_bar(stat="identity", fill="lightblue", color="black")

用我的计步数据试试:
Sys.setenv(JAVA_HOME='C:/Program Files/Java/jdk1.6.0_33/jre')
library(xlsx)
setwd("d:/shenlb/health")
fitbit <- read.xlsx(file="fitbit2014.xlsx", header=TRUE, sheetIndex=1) #用到JAVA,比read.csv慢了不少
meanMonthStep <- aggregate(fitbit$step, by=list(format(fitbit$date,"%m")), mean)
colnames(meanMonthStep) <- c("month","step") #设置列名
ggplot(meanMonthStep, aes(x=month, y=step)) + geom_bar(stat="identity", fill="lightblue", color="black")

3.2 Grouping Bars Together
cabbage_exp
Cultivar Date Weight sd n se
1 c39 d16 3.18 0.9566144 10 0.30250803
2 c39 d20 2.80 0.2788867 10 0.08819171
3 c39 d21 2.74 0.9834181 10 0.31098410
4 c52 d16 2.26 0.4452215 10 0.14079141
5 c52 d20 3.11 0.7908505 10 0.25008887
6 c52 d21 1.47 0.2110819 10 0.06674995
条形图的x轴通常是一个分类变量,y轴是连续变量,经常还会提供另一个分类变量,进行分组比较,这里用Cultivar,放在fill属性中(实际上还可以用其它显示样式,但填充色最容易区分不同的可视化对象),用dodge选项使它们互相躲避。
ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar)) + geom_bar(stat="identity", position="dodge")

如果没有用position=”dodge”选项,则是堆叠条形图。
ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar)) + geom_bar(stat="identity")

还可以用其它的调色板进行填充:
ggplot(cabbage_exp, aes(x=Date, y=Weight, fill=Cultivar)) +
geom_bar(stat="identity", position="dodge", color="black") +
scale_fill_brewer(palette="Pastel1")

3.3. Making a Bar Graph of Counts
head(diamonds)
carat cut color clarity depth table price x y z
1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.29 Premium I VS2 62.4 58 334 4.20 4.23 2.63
5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48
如果只是想按某个分类变量统计出现的个数,则:
ggplot(diamonds, aes(x=cut)) + geom_bar()
它实际上等价于下面的命令:
ggplot(diamonds, aes(x=cut)) + geom_bar(stat="bin")

上面的例子的x轴用的是分类变量,如果用连续变量,则会得到直方图。
ggplot(diamonds, aes(x=price)) + geom_bar(stat="bin")
这时最好用geom_histogram():
ggplot(diamonds, aes(x=price)) + geom_histogram()

3.4. Using Colors in a Bar Graph
把计步数据用指定的颜色填充。这里只有11个月,所以造了11种颜色。
ggplot(meanMonthStep, aes(x=month, y=step, fill=month)) +
geom_bar(stat="identity", color="black") +
scale_fill_manual(values=c("#111111", "#222222", "#333333", "#444444", "#555555", "#666666",
"#777777", "#888888", "#999999", "#AAAAAA", "#BBBBBB"))

如果想移除右侧的图例,用guide=FALSE
ggplot(meanMonthStep, aes(x=month, y=step, fill=month)) +
geom_bar(stat="identity", color="black") +
scale_fill_manual(values=c("#111111", "#222222", "#333333", "#444444", "#555555", "#666666",
"#777777", "#888888", "#999999", "#AAAAAA", "#BBBBBB"), guide=FALSE)
加文本标签
ggplot(meanMonthStep, aes(x=month, y=step)) +
geom_bar(stat="identity", fill="lightblue", color="black") +
geom_text(aes(label=floor(step)), vjust=-0.2)

R Graphics Cookbook 第3章 – Bar Graphs的更多相关文章
- 图表|Line graphs|Bar graphs|Pie graphs|Scatter graphs|标目|标值|图解|图题|标值|
科研论文写作-图表 图像的特点是直观性高效,可用于描述非线性关系,将文字难以描述的内容表达出来. Line graphs中有自变量和因变量,用于表示变化趋势.为了清晰简洁和易于辨认,所以其中的线条最好 ...
- R自动数据收集第二章HTML笔记1(主要关于handler处理器函数和帮助文档所有示例)
本文知识点: 1潜在畸形页面使用htmlTreeParse函数 2startElement的用法 3闭包 4handler函数的命令和函数体主要写法 5节点的丢弃,取出,取出标签名称.属性.属 ...
- R入门<三>-R语言实战第4章基本数据管理摘要
入门书籍:R语言实战 进度:1-4章 摘要: 1)实用的包 forecast:用于做时间序列预测的,有auto.arima函数 RODBC:可以用来读取excel文件.但据说R对csv格式适应更加良好 ...
- iOS编程Cookbook第19章最后一个例子不能正常工作的解决办法
大熊猫猪·侯佩原创或翻译作品.欢迎转载,转载请注明出处. 如果觉得写的不好请多提意见,如果觉得不错请多多支持点赞.谢谢! hopy ;) 在Cookbook的第19章的11节中所要解决的是在App中显 ...
- R自动数据收集第二章HTML笔记2(主要关于htmlTreeParse函数)
包含以下几个小的知识点 1htmlTreeParse函数源码和一些参数 2hander的写法 3关于missing函数 4关于if-else语句中else语句的花括号问题 5关于checkHandle ...
- R自动数据收集第一章概述——《List of World Heritage in Danger》
导包 library(stringr) library(XML) library(maps) heritage_parsed <- htmlParse("http://en ...
- Java 7 Concurrency Cookbook 翻译 第一章 线程管理之六
十一.处理线程组中的未控制异常 每种编程语言一个很重要的特性就是其所提供的用来处理程序中错误情况的机制.Java语言和其他的现代语言一样,是提供了异常机制来处理对象程序中的错误.Java提供了很多的类 ...
- Java 7 Concurrency Cookbook 翻译 第一章 线程管理之一
一.简介 在计算机的世界里,当我们谈论并发时,我们指的是一系列的任务同时运行于一个计算机中.这里说的同时运行,在计算机拥有多于一个处理器或者是一个多核处理器的时候才是真正的同时,在计算机只拥有单核处理 ...
- CSS For Bar Graphs(maybe old)
Having a working knowledge of XHTML and CSS when developing applications is a big help in knowing wh ...
随机推荐
- C#获取类以及类下的方法(用于Asp.Net MVC)
在C#中,实现动态获取类和方法主要通过反射来实现,要引用System.Reflection. public ActionResult GetControllerAndAction() List< ...
- Unity 中的协同程序
今天咱就说说,协同程序coroutine.(这文章是在网吧敲的,没有unity,但是所有结论都被跑过,不管你信得过我还是信不过我,都要自己跑一下看看,同时欢迎纠错)先说说啥是协程:协同程序是一个非常让 ...
- ruby -- 问题解决(四)编码错误导致无法显示(2)
从数据库中取得数据显示时报 incompatible character encodings: GBK and ASCII-8BIT或 incompatible character encodings ...
- IT人的自我导向型学习:学习的4个层次
谈起软件开发一定会想到用什么技术.采用什么框架,然而在盛行的敏捷之下,人的问题逐渐凸显出来.不少企业请人来培训敏捷开发技术,却发现并不能真正运用起来,其中一个主要原因就是大家还没有很好的学习能力.没有 ...
- sql语句查询数据库表结构信息
开发中经常用到查询指定表及其字段的信息,以下是我整理的SQL语句查询方法,供自己平时使用也提供给大家参考! 1.适用MS SQL SERVER: SELECT 表名 = then d.name els ...
- SCRUM项目 4.0
4.0----------------------------------------------- 1.准备看板. 形式参考图4. 2.任务认领,并把认领人标注在看板上的任务标签上. 先由个人主动领 ...
- Google Code jam Qualification Round 2015 --- Problem A. Standing Ovation
Problem A. Standing Ovation Problem's Link: https://code.google.com/codejam/contest/6224486/dashbo ...
- 重构第17天提取父类(Extract SuperClass)
今天的重构来自 Martin Fowler的http://refactoring.com/catalog/extractSuperclass.html. 理解:本文中的“提取父类”是指类中有一些字段或 ...
- .Net反射机制分析和使用
1..NET反射的概述 .NET反射是审查元数据并动态收集关于它的类型信息的能力. 应用程序结构分为应用程序域—程序集—模块—类型—成员几个层次,公共语言运行库加载器管理应用程序域.这些域在拥有相同应 ...
- SQL 批量字符串替换
--在SQL SERVER中批量替换字符串的方法 update table[表名] set Fields[字段名]=replace(Fields[字段名],'被替换原内容','要替换成的内容') up ...