https://en.wikipedia.org/wiki/Support_vector_machine

In machine learning, support vector machines (SVMs, also support vector networks[1]) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. Given a set of training examples, each marked as belonging to one or the other of two categories, an SVM training algorithm builds a model that assigns new examples to one category or the other, making it a non-probabilistic binary linear classifier. An SVM model is a representation of the examples as points in space, mapped so that the examples of the separate categories are divided by a clear gap that is as wide as possible. New examples are then mapped into that same space and predicted to belong to a category based on which side of the gap they fall.

Support vector machine的更多相关文章

  1. 6. support vector machine

    1. 了解SVM 1. Logistic regression 与SVM超平面 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类.如果用x表示数据点,用y表示类别( ...

  2. 使用Support Vector Machine

    使用svm(Support Vector Machine)中要获得好的分类器,最重要的是要选对kernel. 常见的svm kernel包括linear kernel, Gaussian kernel ...

  3. Support Vector Machine (3) : 再谈泛化误差(Generalization Error)

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  4. Support Vector Machine (2) : Sequential Minimal Optimization

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  5. Support Vector Machine (1) : 简单SVM原理

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  6. 支持向量机 support vector machine

    SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习. ...

  7. A glimpse of Support Vector Machine

    支持向量机(support vector machine, 以下简称svm)是机器学习里的重要方法,特别适用于中小型样本.非线性.高维的分类和回归问题.本篇希望在正篇提供一个svm的简明阐述,附录则提 ...

  8. 支持向量机SVM(Support Vector Machine)

    支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classificati ...

  9. 机器学习技法:01 Linear Support Vector Machine

    Roadmap Course Introduction Large-Margin Separating Hyperplane Standard Large-Margin Problem Support ...

  10. 支持向量机(Support Vector Machine,SVM)—— 线性SVM

      支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learnin ...

随机推荐

  1. Xamarin.Android开发实践(十)

    Xamarin.Android之SQLiteOpenHelper 一.前言 在手机中进行网络连接不仅是耗时也是耗电的,而耗电却是致命的.所以我们就需要数 据库帮助我们存储离线数据,以便在用户未使用网络 ...

  2. hdu 4398 STL

    题意描述半天描述不好,直接粘贴了 Now your team is participating a programming contest whose rules are slightly diffe ...

  3. HTML5标准学习 – DOCTYPE

    转自:http://www.cnblogs.com/GrayZhang/archive/2011/03/31/learning-html5-doctype.html 上一篇文章主要讲述了HTML文档的 ...

  4. 微信SDK开发学习

    public class MainActivity extends Activity { // 应用程序的id,就是在网上开发平台创建应用的appid public static final Stri ...

  5. css 历史及css3 新特性

  6. Stay教你程序员泡妞攻略

    七天大长假,得瑟的人们又要粗来秀恩爱晒旅途了,苦逼的程序员们要么加班(说好的三倍呢),要么宅家自lu.想想都觉得悲哀.一来我们抱怨生活只有代码,二来只让代码充斥自己的生活.在Stay看来,学会生活要比 ...

  7. 2016 Multi-University Training Contest 9

    solved 1/13 2016 Multi-University Training Contest 9 二分+最大权闭合图 Less Time, More profit(BH) 题意就是有n个工厂, ...

  8. POJ1511 Invitation Cards(多源单汇最短路)

    边取反,从汇点跑单源最短路即可. #include<cstdio> #include<cstring> #include<queue> #include<al ...

  9. android studio ndk 调试

    一: 先看看用 ndk-gdb 手动调试 这种方法只适用于手动编写 Android.mk 的情况,因为我们要手动 build debug 版本的 .so 文件.具体可以参考我的前一篇文章. 1 And ...

  10. HDU 2255 & KM模板

    题意: 一张完备二分图求最优完备匹配. SOL: 这题就不讲什么sol了...毕竟是裸的KM,不会的话可以看老人家的大白鼠,一些问题看代码注释.讲讲经历(悲惨的经历) 刚打完,自信地交上去发现MLE. ...