单目标(表观模型):

1. Seunghoon HongBohyung
Han
. Orderless Tracking
through Model-Averaged Density Estimation
. (Offline tracking?和一般的object tracking还是不一样的。 CVPR12上也有篇Orderless
Tracking
, 不过是online tracking)

2. Zhibin Hong, Xue MeiDacheng
Tao
Tracking via Robust Multi-Task Multi-View Joint Sparse Representation. (稀疏表示)

3. Naiyan Wang.Online
Robust Non-negative Dictionary Learning for Visual Tracking
.

4. Jin Gao. Discriminant Tracking Using Tensor Representation with Semi-supervise d Improvement. (Tensor,中科院的强项来了)

5. Kwang Yi. Initialization-Insensitive Visual Tracking Through Voting with Salient Local Features.

6. Junliang Xing. Robust Object Tracking with Online Multi-lifespan Dictionary Learning.

7. Dapeng Che. Constructing Adaptive Complex Cells for Robust Visual Tracking.

8. Qinxun Bai.Randomized
Ensemble Tracking
. (草草看了一下,作者在线学习了弱分类器的权重系数,目标用了分块提取的直方图特征。)

9. Stefan Duffner. PixelTrack: a fast adaptive algorithm for tracking non-rigid objects.

10. Martin Schiegg. Conservation Tracking.

多目标(关联跟踪):

1. Caglayan Dicle. The Way They Move: Tracking Multiple Targets with Similar Appearance.

2. Baoyuan WuJi
Qiang
, and et al. Simultaneous Clustering and Tracklet Linking for Multi-Face Tracking in Videos.

3. Siyu TangLearning
People Detectors for Tracking in Crowded Scenes
. (Tracking failure, occlusion pattern)

4. Chetan AroraHigher Order Matching for Consistent Multiple Target Tracking.

5. Aleksandr Segal, Ian ReidLatent
Data Association: Bayesian Model Selection for Multitarget Tracking
.

跟踪算法评价:

1. YU PANG, Haibin Ling.Finding
the Best from the Second Bests -- Inhibiting Subjective Bias in Evaluation of Visual Tracking Algorithms
. (这是一篇很有趣的文章,作者认为如果tracking paper做性能比较时一般都会有bias存在,因为调参、选视频和对比算法中不可避免加入作者主观的因素使proposed tracker在competition中胜出。然而,作者注意到了一点,除去那个proposed
tracker,其他trackers(也就是题目中的second bests)的比较结果的可信度应该比较大,所以可以搜集跟踪论文中除去proposed tracker的所有结果,从这些数据中李云排序算法得到各种跟踪算法的性能排名。最后结果Struck还是排名第一。)

从收录论文来看可见几种趋势,在RGB-D图像上的跟踪开始增多(上文没有列出),扫了一眼收录论文至少有3篇。基于Dictionary Learning的有2篇录用,从子空间(PCA)到sparse-coding-based tracking(L1)再到到Dictionary Learning-based tracking这个过程也相当的清晰了。至于多目标跟踪,需要多多学习了。

*以上对单/多目标的分类仅从论文题目上判断。

其他感兴趣的工作(陆续发现中):

1. Michael GygliHelmut
Grabner
.The Interestingness of Images.

2. Hamed Kiani galoogahi,Terence
Sim
,Simon Lucey.Multi-Channel
Correlation Filters
. (Minimum Output Sum of Squared Error Filter对于多通道特征的扩展)

3. Carl Vondrick, Aditya Khosla, Tomasz Malisiewicz, Antonio Torralba. HOGgles: Visualizing
Object Detection Features
. (from MIT, demo可以把图像的HoG特征可视化,cool!)

4. Rui Zhao, Wanli Ouyang, Xiaogang
Wang
Person Re-identification by Salience Matching. (Re-Id, from CUHK)

5. Weilin Huang,  Zhe Lin,Jianchao
Yang
,Jue Wang.Text
Localization in Natural Images using Stroke Feature Transform and Text Covariance Descriptors
. (byAdobe<人家叫阿逗比,不是阿逗巴>, 笔画变换+Cov描述子)

6. Javier Marin, David Vazquez, Jaume Amores, Antonio Lopez, Bastian Leibe.Random
Forests of Local Experts for Pedestrian Detection
. (随机森林, 行人检测)

7. Taegyu Lim, Seunghoon Hong, Bohyung Han, Joon Hee Han. Simultaneous Segmentation and Pose Tracking in Moving Camera.

8. Piotr Dollar, Larry Zitnick. Structured
Forests for Fast Edge Detection
. (Random Forest用于边缘检测,新颖,快评见此

9. Danhang TangT-K.
Kim
Real-time Articulated Hand Pose Estimation using Semi-supervised
Transductive Regression Forests
.

10. X. Zhu, C. C. Loy, and S. Gong. Video
Synopsis by Heterogeneous Multi-Source Correlation
. (视频摘要, Clustering Forest 应用)

11. Samuel Schulter, Christian Leistner, Paul Wohlhart and et al. Alternating
Regression Forests for Object Detection and Pose Estimation
. (TU Graz)

ICCV2013 录用论文(目标跟踪相关部分)(转)的更多相关文章

  1. 【目标跟踪】相关滤波算法之MOSSE

    简要 2010年David S. Bolme等人在CVPR上发表了<Visual Object Tracking using Adaptive Correlation Filters>一文 ...

  2. CVPR2018 关于视频目标跟踪(Object Tracking)的论文简要分析与总结

    本文转自:https://blog.csdn.net/weixin_40645129/article/details/81173088 CVPR2018已公布关于视频目标跟踪的论文简要分析与总结 一, ...

  3. 目标跟踪之相关滤波:CF及后续改进篇

    一. 何为相关滤波? Correlation Filter 最早应用于信号处理,用来描述两个信号之间的相关性,或者说相似性(有点像早期的概率密度),先来看定义: 对于两个数据 f 和 g,则两个信号的 ...

  4. CVPR 2020目标跟踪多篇开源论文(上)

    CVPR 2020目标跟踪多篇开源论文(上) 1. SiamBAN:面向目标跟踪的Siamese Box自适应网络 作者团队:华侨大学&中科院&哈工大&鹏城实验室&厦门 ...

  5. CVPR 2020目标跟踪多篇开源论文(下)

    CVPR 2020目标跟踪多篇开源论文(下) 6. Cooling-Shrinking Attack: Blinding the Tracker with Imperceptible Noises 作 ...

  6. Video Target Tracking Based on Online Learning—TLD单目标跟踪算法详解

    视频目标跟踪问题分析         视频跟踪技术的主要目的是从复杂多变的的背景环境中准确提取相关的目标特征,准确地识别出跟踪目标,并且对目标的位置和姿态等信息精确地定位,为后续目标物体行为分析提供足 ...

  7. Video Target Tracking Based on Online Learning—深度学习在目标跟踪中的应用

    摘要 近年来,深度学习方法在物体跟踪领域有不少成功应用,并逐渐在性能上超越传统方法.本文先对现有基于深度学习的目标跟踪算法进行了分类梳理,后续会分篇对各个算法进行详细描述. 看上方给出的3张图片,它们 ...

  8. 目标跟踪之camshift---opencv中meanshift和camshift例子的应用

    在这一节中,主要讲目标跟踪的一个重要的算法Camshift,因为它是连续自使用的meanShift,所以这2个函数opencv中都有,且都很重要.为了让大家先达到一个感性认识.这节主要是看懂和运行op ...

  9. MAML-Tracker: 目标跟踪分析:CVPR 2020(Oral)

    MAML-Tracker: 目标跟踪分析:CVPR 2020(Oral) Tracking by Instance Detection: A Meta-Learning Approach 论文链接:h ...

随机推荐

  1. 使用alpine的docker镜像下 dind 的方式安装dotnet core 的一个非dockerfile的方法

    1. 下载dind的镜像 docker pull docker:dind 2. 执行该镜像 docker run -it --privileged --name some-docker -d dock ...

  2. maven基础知识汇总

    maven的dependency中scope=compile和provided的区别 对于scope=compile的情况(默认scope),也就是说这个项目在编译,测试,运行阶段都需要这个artif ...

  3. Java学习之基本数据类型和引用数据类型区别

    JAVA中分为基本数据类型和引用数据类型区别一.基本数据类型: byte:Java中最小的数据类型,在内存中占8位(bit),即1个字节,取值范围-128~127,默认值0 short:短整型,在内存 ...

  4. 【BZOJ1898】[ZJOI2005]沼泽鳄鱼(矩阵快速幂,动态规划)

    [BZOJ1898][ZJOI2005]沼泽鳄鱼(矩阵快速幂,动态规划) 题面 BZOJ 洛谷 题解 先吐槽,说好了的鳄鱼呢,题面里面全是食人鱼 看到数据范围一眼想到矩乘. 先不考虑食人鱼的问题,直接 ...

  5. mysql主主同步设置

    mysql主主同步设置 主主同步设置是同等的地位,所以以下操作在两台机器上都需要进行而且操作是相同的. 服务器 服务器代号 IP hostname A 192.168.70.128 Debian1 B ...

  6. 51nod 1450 闯关游戏

    首先肯定要先把所有的关卡打通后去找两星几率最大的关卡刷星(论打游戏经验的重要性). 所以从两星几率小的关打起,记录当前拿到x个星星的几率和当前走过的期望步数,如果发现剩下的关必须全两星,就直接计算答案 ...

  7. Java IO 类一览表

    下表列出了大多数(非全部)按输/输出,基于字节或字符划分的 Java IO 类.

  8. 【CSS】float属性

    float浮动属性1.作用: 将页面元素浮动起来,使其能够向左或者向右排列 2.应用: 实现页面中布局的左右排版 实现图文环绕的版式效果 3.值: 4.原理: 浮动元素将脱离默认的文档流,漂浮在默认文 ...

  9. python BitTornado P2P分发大文件

    P2P分发大文件思路 1.将软件包生成种子文件 2.通过saltstack将种子文件分发至每台服务器 3.每台服务器进行种子下载 推荐使用Twitter开源的murder.Twitter用它来分发大文 ...

  10. Angular.js浅谈

    至今博主对于MVVM框架比较了解的就只能算有Angular了,首先给大家明确一个概念,Angular1.x才能叫Angular.js,而Angular2.4.5都直接叫Angular了,因为从2开始已 ...