1. cv2.Canny(src, thresh1, thresh2) 进行canny边缘检测

参数说明: src表示输入的图片, thresh1表示最小阈值,thresh2表示最大阈值,用于进一步删选边缘信息

Canny边缘检测步骤:

第一步:使用高斯滤波器进行滤波,去除噪音点

第二步:使用sobel算子,计算出每个点的梯度大小和梯度方向

第三步:使用非极大值抑制(只有最大的保留),消除边缘检测带来的杂散效应

第四步:应用双阈值,来确定真实和潜在的边缘

第五步:通过抑制弱边缘来完成最终的边缘检测

第一步:高斯滤波进行滤波操作

这是3*3的归一化后的高斯核,将当前核与图片中的9个位置对应位置求和,表示当前位置的像素值,进行平滑处理,去除一些噪声点的干扰

第二步:使用sobel算子,计算各个点的梯度大小和梯度方向

使用的sobel算子存在两个方向,即x轴和y轴方向,分别计算x轴的梯度为Gx, 计算y轴的梯度为Gy

当前点的梯度大小 = sqrt(Gx ^ 2 + Gy ^ 2)

梯度的方向:Θ = arctan(Gx / Gy)

第三步:使用非极大值抑制,消除杂散效应

非极大值抑制第一种方式,如图所示,g1表示的是坐上角一点的梯度值,g2为当前点上面一点的梯度值,斜线表示的是梯度的方向,我们需要计算出斜线与g1,g2交点的近似梯度值,使用线性差值表示:即M(dtmp1) = w*M(g2) + (1-w) * M(g1)  w = distance(dtmp1, g2) / distance(g1, g2)

同理计算出M(dtmp2) 即斜线与g3,g4的交点的近似梯度值

将C点的梯度值与M(dtmp1) 和 M(dtmp2)的大小做一个比较,如果比两者都大就保留,否者就去除

非极大值抑制第二种方式,如图所示, 我们可以直接比较梯度方向的斜线与哪条直线比较接近,就与哪个方向上的梯度值进行比较,我们可以初步的知道角度的区间是

(30, 45, 60, 90) , 举例说明,如果斜线靠近45度角的斜线,那么就与对角线上的两个点的梯度做比较,如果都大于则保留,否者剔除

第四步:使用双阈值来获得真实边缘和潜在的边缘

进行进一步删选,如果当前梯度值大于给定的maxVal,判断为边界, 如果当前梯度值小于minval则舍弃,如果当前梯度值在给定的最大值和最小值之间,如果其周围的点是边界点,那么当前点保留,否者舍弃

从上图我们可以看出,当minval和maxval越小时,所保留的边缘信息更多

第一步:载入lena图片

第二步:使用两组阈值,对结果作图做比较

第三步:载入汽车的图

第四步: 使用两组阈值,对结果作图做比较

import cv2
import numpy as np img = cv2.imread('lena.jpg')
v1 = cv2.Canny(img, 80, 150)
v2 = cv2.Canny(img, 50, 100) ret = np.hstack((v1, v2))
cv2.imshow('img', ret)
cv2.waitKey(0)
cv2.destroyAllWindows()

在最大阈值和最小阈值都偏小的情况下,我们可以看出右边这幅图比左边这幅图拥有更多的轮廓信息,同样的也容易存在一些非边缘点的信息

car = cv2.imread('car.png')
v1 = cv2.Canny(car, 120, 250)
v2 = cv2.Canny(car, 50, 100)
ret = np.hstack((v1, v2))
cv2.imshow('car', ret)
cv2.waitKey(0)
cv2.destroyAllWindows()

右边的图的边缘信息更多,左边的图很多房子的线条没有了

机器学习进阶-边缘检测-Canny边缘检测 1.cv2.Canny(进行Canny边缘检测)的更多相关文章

  1. 机器学习进阶-图像基本操作-数值计算 1.cv2.add(将图片进行加和) 2.cv2.resize(图片的维度变换) 3.cv2.addWeighted(将图片按照公式进行重叠操作)

    1.cv2.add(dog_img, cat_img)  # 进行图片的加和 参数说明: cv2.add将两个图片进行加和,大于255的使用255计数 2.cv2.resize(img, (500, ...

  2. 机器学习进阶-案例实战-答题卡识别判 1.cv2.getPerspectiveTransform(获得投射变化后的H矩阵) 2.cv2.warpPerspective(H获得变化后的图像) 3.cv2.approxPolyDP(近似轮廓) 4.cv2.threshold(二值变化) 7.cv2.countNonezeros(非零像素点个数)6.cv2.bitwise_and(与判断)

    1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, tra ...

  3. 机器学习进阶-图像金字塔与轮廓检测-轮廓检测 1.cv2.cvtColor(图像颜色转换) 2.cv2.findContours(找出图像的轮廓) 3.cv2.drawContours(画出图像轮廓) 4.cv2.contourArea(轮廓面积) 5.cv2.arcLength(轮廓周长) 6.cv2.aprroxPloyDP(获得轮廓近似) 7.cv2.boudingrect(外接圆)..

    1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 ...

  4. 机器学习进阶-人脸关键点检测 1.dlib.get_frontal_face_detector(构建人脸框位置检测器) 2.dlib.shape_predictor(绘制人脸关键点检测器) 3.cv2.convexHull(获得凸包位置信息)

    1.dlib.get_frontal_face_detector()  # 获得人脸框位置的检测器, detector(gray, 1) gray表示灰度图, 2.dlib.shape_predict ...

  5. 机器学习进阶-目标追踪-SSD多进程执行 1.cv2.dnn.readnetFromCaffe(用于读取已经训练好的caffe模型) 2.delib.correlation_tracker(生成追踪器) 5.cv2.writer(将图片写入视频中) 6.cv2.dnn.blobFromImage(图片归一化) 10.multiprocessing.process(生成进程)

    1. cv2.dnn.readNetFromCaffe(prototxt, model)  用于进行SSD网络的caffe框架的加载 参数说明:prototxt表示caffe网络的结构文本,model ...

  6. 机器学习进阶-目标跟踪-KCF目标跟踪方法 1.cv2.multiTracker_create(构造选框集合) 2. cv2.TrackerKCF_create(获得KCF追踪器) 3. cv2.resize(变化图像大小) 4.cv2.selectROI(在图像上框出选框)

    1. tracker = cv2.multiTracker_create() 获得追踪的初始化结果 2.cv2.TrackerKCF_create() 获得KCF追踪器 3.cv2.resize(fr ...

  7. 机器学习进阶-光流估计 1.cv2.goodFeaturesToTrack(找出光流估计所需要的角点) 2.cv2.calcOpticalFlowPyrLK(获得光流检测后的角点位置) 3.cv2.add(进行像素点的加和)

    1.cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params)  用于获得光流估计所需要的角点参数说明:old_gray表示输入图片, ...

  8. 机器学习进阶-背景建模-(帧差法与混合高斯模型) 1.cv2.VideoCapture(进行视频读取) 2.cv2.getStructureElement(构造形态学的卷积) 3.cv2.createBackgroundSubtractorMOG2(构造高斯混合模型) 4.cv2.morpholyEx(对图像进行形态学的变化)

    1. cv2.VideoCapture('test.avi') 进行视频读取 参数说明:‘test.avi’ 输入视频的地址2. cv2.getStructureElement(cv2.MORPH_E ...

  9. 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)

    1. sift.detectAndComputer(gray, None)  # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...

随机推荐

  1. 服务容错保护断路器Hystrix之四:断路器监控(Hystrix Dashboard)-turbine集群监控

    turbine 英[ˈtɜ:baɪn] n. 汽轮机; 涡轮机; 透平机; OK,上文我们看了一个监控单体应用的例子,在实际应用中,我们要监控的应用往往是一个集群,这个时候我们就得采取Turbine集 ...

  2. 符合seo的html标签优化

     原文地址:http://www.rainleaves.com/html/1032.html   seo(Search Engine Optimiztion)搜索引擎优化的英文缩写.通过总结搜索引擎的 ...

  3. Perl 文件处理范例

    觉得这个范例不错就保存了,原文地址在这里:http://www.cnblogs.com/zhangzhi/archive/2010/10/19/1855302.html Perl 文件处理范例 . 任 ...

  4. python之路——1

    王二学习python的笔记以及记录,如有雷同,那也没事,欢迎交流,wx:wyb199594 学习内容 python的历史: python2 源码不标准,混乱,重复代码太多, python3 统一 标准 ...

  5. Linux镜像源

    1. 国内镜像源 (1.)备份原有镜像源文件 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup ...

  6. 2018北美部分CS项目学费

    yearly cost from official website USC 城里 24credit about 49k + cost of room&food BU 城里 NEU 65k 城里 ...

  7. gradle本地、远程仓库配置

    本地仓库配置 配置环境变量GRADLE_USER_HOME,并指向你的一个本地目录,用来保存Gradle下载的依赖包. 远程仓库配置 一般Gradle.maven从中央仓库mavenCentral() ...

  8. 锚点定位,jquery定位到页面指定位置

    jquery锚点定位 $('body,html').animate({scrollTop: $('#ter1').offset().top}, 500);#ter1是你要定位的id对象,500是0.5 ...

  9. Windows Server 2012R2 网络地址转换NAT

    一.NAT概述 网络地址转换NAT(Network Address Translation)可以动态改变通过路由器的IP报文的内容(修改报文的源IP地址和/或目的IP地址).离开路由器的报文的源地址或 ...

  10. python r(不进行转义)的用法

      第一种用法,直接针对字符串:r‘E:\ui\bbq.txt’ 第二种用法,针对变量名:r'' + 变量名