奇怪吸引子---DequanLi
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性、稳定性、吸引性。吸引子是一个数学概念,描写运动的收敛类型。它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出发的非定常流的所有轨道都趋于它,这样的集合有很复杂的几何结构。由于奇怪吸引子与混沌现象密不可分,深入了解吸引子集合的性质,可以揭示出混沌的规律。
这里会展示利用奇怪吸引子生成的艺术图像。奇怪吸引子通常含有三维或四维的数据,而图像是二维的,因此可以从不同的位面将奇怪吸引子投影到二维图像中。
原图及数学公式取自:
http://chaoticatmospheres.com/125670/1204030/gallery/strange-attractors

这里使用自己定义语法的脚本代码生成混沌图像,相关软件参见:YChaos生成混沌图像。如果你对数学生成图形图像感兴趣,欢迎加入QQ交流群: 367752815。
脚本代码:
[ScriptLines]
u=a*(j-i) + b*i*k
v=c*i + d*j - i*k
w=e*k + i*j - f*i*i
i=i+u*t
j=j+v*t
k=k+w*t
x=i
y=j
z=k [Variables]
a=40.000000
b=0.160000
c=55.000000
d=20.000000
e=1.833000
f=0.650000
i=0.405600
j=1.000000
k=0.000000
t=0.000100
混沌图像:




奇怪吸引子---DequanLi的更多相关文章
- 奇怪吸引子---YuWang
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WimolBanlue
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---WangSun
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---TreeScrollUnifiedChaoticSystem
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Thomas
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---ShimizuMorioka
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Sakarya
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Russler
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
- 奇怪吸引子---Rucklidge
奇怪吸引子是混沌学的重要组成理论,用于演化过程的终极状态,具有如下特征:终极性.稳定性.吸引性.吸引子是一个数学概念,描写运动的收敛类型.它是指这样的一个集合,当时间趋于无穷大时,在任何一个有界集上出 ...
随机推荐
- RAR压缩包审计工具unrar-nofree
RAR压缩包审计工具unrar-nofree RAR是常见的一种压缩包格式,广泛应用于Windows系统下.Kali Linux提供一款专用的审计工具unrar-nofree.该工具由WinRAR ...
- HTTP协议-缓存
HTTP 协议中,缓存更多关心的文档资源的再利用.其目的是减少数据传输,加快相应速度等等.而对于缓存采用的是什么方案,也就是存在内存中还是硬盘中之类的问题,就属于另外的内容了. 假设,我身在广东,但是 ...
- windows下elasticsearch启动
windows下启动elasticsearch,依赖于配置好JAVA_HOME D:\Program Files\Java\jdk1.7.0_71 命令行启动elasticsearch.bat即可实现 ...
- BZOJ.2716.[Violet3]天使玩偶(CDQ分治 坐标变换)
题目链接 考虑对于两个点a,b,距离为|x[a]-x[b]|+|y[a]-y[b]|,如果a在b的右上,那我们可以把绝对值去掉,即x[a]+y[a]-(x[b]+y[b]). 即我们要求满足x[b]& ...
- BZOJ3956: Count
Description Input Output Sample Input 3 2 0 2 1 2 1 1 1 3 Sample Output 0 3 HINT M,N<=3*10^ ...
- [CEOI2017]Palindromic Partitions
[CEOI2017]Palindromic Partitions 题目大意: 给出一个长度为\(n(n\le10^6)\)的只包含小写字母字符串,要求你将它划分成尽可能多的小块,使得这些小块构成回文串 ...
- 在mysql中使用group by和order by取每个分组中日期最大一行数据
转载自:https://blog.csdn.net/shiyong1949/article/details/78482737 在mysql中使用group by进行分组后取某一列的最大值,我们可以直接 ...
- 事件触发器-----dispatchEvent
不要被标题蒙蔽了,今天的重点不是论述事件触发器,而是说一下dispatchEvent这个东西.好了,先简单做个铺垫,dispatchEvent是作为高级浏览器(如chrome.Firfox等)的事件触 ...
- 详解没有dSYM文件 如何解析iOS崩溃日志
Xcode支持崩溃日志自动符号化,前提是本地有当时Build/Archive生成的dSYM文件,iOS崩溃日志符号化后,可以帮助开发者更好的定位问题,但如果dSYM文件丢失或拿到的崩溃日志不是标准的c ...
- Android命令(更新……)
1.通过命令行安装包 语法:adb install -r apk包 例子:adb install -r D:\android\android-sdk-windows\platform-tools\L ...