RateLimiter
RateLimiter是Guava的concurrent包下的一个用于限制访问频率的类.
限流算法
常用的更平滑的限流算法有两种:漏桶算法和令牌桶算法.
很多传统的服务提供商如华为中兴都有类似的专利,参考: http://www.google.com/patents/CN1536815A?cl=zh
漏桶算法
漏桶(Leaky Bucket)算法思路很简单,水(请求)先进入到漏桶里,漏桶以一定的速度出水(接口有响应速率),当水流入速度过大会直接溢出(访问频率超过接口响应速率),然后就拒绝请求,可以看出漏桶算法能强行限制数据的传输速率.示意图如下:

可见这里有两个变量,一个是桶的大小,支持流量突发增多时可以存多少的水(burst),另一个是水桶漏洞的大小(rate),伪代码如下:
double rate; // leak rate in calls/s
double burst; // bucket size in calls
long refreshTime; // time for last water refresh
double water; // water count at refreshTime
refreshWater() {
long now = getTimeOfDay();
//水随着时间流逝,不断流走,最多就流干到0.
water = max(0, water- (now - refreshTime)*rate);
refreshTime = now;
}
bool permissionGranted() {
refreshWater();
if (water < burst) { // 水桶还没满,继续加1
water ++;
return true;
} else {
return false;
}
}
因为漏桶的漏出速率是固定的参数,所以,即使网络中不存在资源冲突(没有发生拥塞),漏桶算法也不能使流突发(burst)到端口速率.因此,漏桶算法对于存在突发特性的流量来说缺乏效率.
令牌桶算法
令牌桶算法(Token Bucket)和 Leaky Bucket 效果一样但方向相反的算法,更加容易理解.随着时间流逝,系统会按恒定1/QPS时间间隔(如果QPS=100,则间隔是10ms)往桶里加入Token(想象和漏洞漏水相反,有个水龙头在不断的加水),如果桶已经满了就不再加了.新请求来临时,会各自拿走一个Token,如果没有Token可拿了就阻塞或者拒绝服务.
令牌桶的另外一个好处是可以方便的改变速度. 一旦需要提高速率,则按需提高放入桶中的令牌的速率. 一般会定时(比如100毫秒)往桶中增加一定数量的令牌, 有些变种算法则实时的计算应该增加的令牌的数量.
RateLimiter简介
Google开源工具包Guava提供了限流工具类RateLimiter,该类基于令牌桶算法(Token Bucket)来完成限流,非常易于使用.RateLimiter经常用于限制对一些物理资源或者逻辑资源的访问速率.它支持两种获取permits接口,一种是如果拿不到立刻返回false,一种会阻塞等待一段时间看能不能拿到.
RateLimiter和Java中的信号量(java.util.concurrent.Semaphore)类似,Semaphore通常用于限制并发量.
源码注释中的一个例子,比如我们有很多任务需要执行,但是我们不希望每秒超过两个任务执行,那么我们就可以使用RateLimiter:
final RateLimiter rateLimiter = RateLimiter.create(2.0);
void submitTasks(List<Runnable> tasks, Executor executor) {
for (Runnable task : tasks) {
rateLimiter.acquire(); // may wait
executor.execute(task);
}
}
另外一个例子,假如我们会产生一个数据流,然后我们想以每秒5kb的速度发送出去.我们可以每获取一个令牌(permit)就发送一个byte的数据,这样我们就可以通过一个每秒5000个令牌的RateLimiter来实现:
final RateLimiter rateLimiter = RateLimiter.create(5000.0);
void submitPacket(byte[] packet) {
rateLimiter.acquire(packet.length);
networkService.send(packet);
}
另外,我们也可以使用非阻塞的形式达到降级运行的目的,即使用非阻塞的tryAcquire()方法:
if(limiter.tryAcquire()) { //未请求到limiter则立即返回false
doSomething();
}else{
doSomethingElse();
}
RateLimiter主要接口
RateLimiter其实是一个abstract类,但是它提供了几个static方法用于创建RateLimiter:
/**
* 创建一个稳定输出令牌的RateLimiter,保证了平均每秒不超过permitsPerSecond个请求
* 当请求到来的速度超过了permitsPerSecond,保证每秒只处理permitsPerSecond个请求
* 当这个RateLimiter使用不足(即请求到来速度小于permitsPerSecond),会囤积最多permitsPerSecond个请求
*/
public static RateLimiter create(double permitsPerSecond);
/**
* 创建一个稳定输出令牌的RateLimiter,保证了平均每秒不超过permitsPerSecond个请求
* 还包含一个热身期(warmup period),热身期内,RateLimiter会平滑的将其释放令牌的速率加大,直到起达到最大速率
* 同样,如果RateLimiter在热身期没有足够的请求(unused),则起速率会逐渐降低到冷却状态
*
* 设计这个的意图是为了满足那种资源提供方需要热身时间,而不是每次访问都能提供稳定速率的服务的情况(比如带缓存服务,需要定期刷新缓存的)
* 参数warmupPeriod和unit决定了其从冷却状态到达最大速率的时间
*/
public static RateLimiter create(double permitsPerSecond, long warmupPeriod, TimeUnit unit);
提供了两个获取令牌的方法,不带参数表示获取一个令牌.如果没有令牌则一直等待,返回等待的时间(单位为秒),没有被限流则直接返回0.0:
public double acquire();
public double acquire(int permits);
尝试获取令牌,分为待超时时间和不带超时时间两种:
public boolean tryAcquire();
//尝试获取一个令牌,立即返回
public boolean tryAcquire(int permits);
public boolean tryAcquire(long timeout, TimeUnit unit);
//尝试获取permits个令牌,带超时时间
public boolean tryAcquire(int permits, long timeout, TimeUnit unit);
RateLimiter的更多相关文章
- guava学习--ratelimiter
RateLimiter类似于JDK的信号量Semphore,他用来限制对资源并发访问的线程数. RateLimiter limiter = RateLimiter.create(4.0); //每秒不 ...
- Guava并发:ListenableFuture与RateLimiter示例
ListenableFuture顾名思义就是可以监听的Future,它是对java原生Future的扩展增强 RateLimiter类似于JDK的信号量Semphore,他用来限制对资源并发访问的线程 ...
- 分布式环境下限流方案的实现redis RateLimiter Guava,Token Bucket, Leaky Bucket
业务背景介绍 对于web应用的限流,光看标题,似乎过于抽象,难以理解,那我们还是以具体的某一个应用场景来引入这个话题吧. 在日常生活中,我们肯定收到过不少不少这样的短信,“双11约吗?,千款….”,“ ...
- Guava官方文档-RateLimiter类
转载自并发编程网 – ifeve.com RateLimiter 从概念上来讲,速率限制器会在可配置的速率下分配许可证.如果必要的话,每个acquire() 会阻塞当前线程直到许可证可用后获取该许可证 ...
- 超详细的Guava RateLimiter限流原理解析
超详细的Guava RateLimiter限流原理解析 mp.weixin.qq.com 点击上方“方志朋”,选择“置顶或者星标” 你的关注意义重大! 限流是保护高并发系统的三把利器之一,另外两个是 ...
- 业务限流场景简单实现方案:RateLimiter
前因:因为本系统中,有大数据高并发的场景.在向下游系统发送请求的时候,需要限流.否则会造成下游系统的堵塞. 实现方案1: Thread.sleep(ms). 优点:简单粗暴,一行代码搞定 缺点:有点l ...
- 流量控制与RateLimiter
一背景 如何提高系统的稳定性,简单来说除了加机器外就是服务降级.限流.加机器就是常说的分布式,从整个架构的稳定性角度看,一般SOA每个接口的所能提供的单位时间服务能力是有上限.假如超过服务能力,一般会 ...
- 【Guava】使用Guava的RateLimiter做限流
一.常见的限流算法 目前常用的限流算法有两个:漏桶算法和令牌桶算法. 1.漏桶算法 漏桶算法的原理比较简单,请求进入到漏桶中,漏桶以一定的速率漏水.当请求过多时,水直接溢出.可以看出,漏桶算法可以强制 ...
- 使用Guava的RateLimiter完成简单的大流量限流
限流的一般思路: 1.随机丢弃一定规则的用户(迅速过滤掉90%的用户): 2.MQ削峰(比如设一个MQ可以容纳的最大消息量,达到这个量后MQ给予reject): 3.业务逻辑层使用RateLimite ...
- Guava的RateLimiter在单机限流中的正确用法
错误使用 在实现限流时,网上的各种文章基本都会提到Guava的RateLimiter,用于实现单机的限流,并给出类似的代码: public void method() { RateLimiter ra ...
随机推荐
- notepad++添加Compare插件
背景 两个文本文件内容要进行比较的时候就会用到比较的功能,notepad++绝对是不错的选择 x64版notepad++安装Compare插件 度说点击插件然后选择 "Plugin Mana ...
- Noip2018游记——AFO
本来Day 0和Day 1写得挺轻松的,结果没想到Day 2是这样的画风...心情逐渐沉重... Day 0 白天的时候颓的一批,上午考的信心赛还打错了一个字母然后$100pts\rightarrow ...
- 有多少种JVM
https://en.wikipedia.org/wiki/Comparison_of_Java_virtual_machines 在这个类别下,主流选择有:(按流行程度递减) HotSpot VM ...
- 学习ABP遇到的问题汇总
1,在abp官网下载的模板(asp.net+ef)写Application层的时候需要使用AutoMapper.结果ObjectMapper一直为null 解决:需要在当前项目的Module依赖Abp ...
- 暴力探测蓝牙设备工具redfang
暴力探测蓝牙设备工具redfang 根据是否可以被扫描到,蓝牙设备具有可见(Disoverable)和不可见(non discoverable)两种模式.为了扫描不可见蓝牙设备,Kali Linu ...
- Git的一些常用命令
一:Git是什么? Git是目前世界上最先进的分布式版本控制系统. 简单的说就是托管代码的便于多人开发的管理系统. 二.Git的一些命令,我详细的说一下 我是基于github给大家说一下git的一些常 ...
- 【拓扑排序】BZOJ4010-[HNOI2015]菜肴制作
[题目大意] 是要求N个点的一个拓扑序,且满足以下条件:编号1的位置尽可能靠前,在满足所有限制,编号2的位置尽可能靠前,以此类推. [思路] 一开始觉得优先队列维护一下拓扑就好了.然而样例告诉我们是不 ...
- 【转载】C语言 构建参数个数不固定函数
深入浅出可变参数函数的使用技巧本文主要介绍可变参数的函数使用,然后分析它的原理,程序员自己如何对它们实现和封装,最后是可能会出现的问题和避免措施. VA函数(variable argument fun ...
- Codeforces Beta Round #14 (Div. 2) B. Young Photographer 水题
B. Young Photographer 题目连接: http://codeforces.com/contest/14/problem/B Description Among other thing ...
- java ftp上载下传 遇到的问题
1.下载文件中文乱码,和下载文件大小为0kb /** * Description: 从FTP服务器下载文件 * * @param url * FTP服务器hostname * @param port ...