1、准备:

(1)先验概率:根据以往经验和分析得到的概率,也就是通常的概率,在全概率公式中表现是“由因求果”的果

(2)后验概率:指在得到“结果”的信息后重新修正的概率,通常为条件概率(但条件概率不全是后验概率),在贝叶斯公式中表现为“执果求因”的因

例如:加工一批零件,甲加工60%,乙加工40%,甲有0.1的概率加工出次品,乙有0.15的概率加工出次品,求一个零件是不是次品的概率即为先验概率,已经得知一个零件是次品,求此零件是甲或乙加工的概率是后验概率

(3)全概率公式:设E为随机试验,B1,B2,....Bn为E的互不相容的随机事件,且P(Bi)>0(i=1,2....n), B1 U B2 U....U Bn = S,若A是E的事件,则有

                      P(A) = P(B1)P(A|B1)+P(B2)P(A|B2)+.....+P(Bn)P(A|Bn)

(4)贝叶斯公式:设E为随机试验,B1,B2,....Bn为E的互不相容的随机事件,且P(Bi)>0(i=1,2....n), B1 U B2 U....U Bn = S,E的事件A满足P(A)>0,则有

                      P(Bi|A) = P(Bi)P(A|Bi)/(P(B1)P(A|B1)+P(B2)P(A|B2)+.....+P(Bn)P(A|Bn))

(5)条件概率公式:P(A|B) = P(AB)/P(B)

(6)极大似然估计:极大似然估计在机器学习中想当于经验风险最小化,(离散分布)一般流程:确定似然函数(样本的联合概率分布),这个函数是关于所要估计的参数的函数,然后对其取对数,然后求导,在令导数等于0的情况下,求得参数的值,此值便是参数的极大似然估计

注:经验风险:在度量一个模型的好坏,引入了损失函数,常见的损失函数有:0-1损失函数、平方损失函数、绝对损失函数、对数损失函数等,同时风险函数(期望风险)是对损失函数的期望,期望风险是关于联合分布的理论期望,但是理论的联合分布是无法求得的,只能利用样本来估计期望,因此引入经验风险,经验风险就是样本的平均损失,根据大数定理在样本趋于无穷大的时候,这个时候经验风险会无限趋近与期望风险

2、朴素贝叶斯算法

(1)思路:朴素贝叶斯算法的朴素在于对与特征之间看作相互独立的意思例如:输入向量(X1, X2,....,Xn)的各个元素是相互独立的,因此计算概率P(X1=x1,X2=x2,....Xn=xn)=P(X1=x1)P(X2=x2)......P(Xn=xn),其次基于贝叶斯定理,对于给定的训练数据集,首先基于特征条件独立假设学习联合概率分布,然后基于此模型,对于给定的输入向量,利用贝叶斯公式求出后验概率最大的输出分类标签

(2)详细:以判断输入向量x的类别的计算过程来具体说下朴素贝叶斯计算过程

  <1>要计算输入向量x的类别,即是求在x的条件下的y的概率,当y取某值最大概率,则此值便为x的分类,则概率为P(Y=ck|X=x)

  <2>利用条件概率公式推导贝叶斯公式(此步非必要,本人在记贝叶斯公式时习惯这么记)

    由条件概率公式得P(Y=ck|X=x) = P(Y=ck,X=x)/P(X=x) = P(X=x | Y=ck)P(Y=ck)/P(X=x)

    由全概率公式可得(替换P(X=x)):

  <3>由于朴素贝叶斯的“朴素”,特征向量之间是相互独立的,因此可得如下公式:

        

   <4>将<3>中的公式带入<2>中的贝叶斯公式可得:

        

  <5>看上式的分母,对于给定的输入向量X,以及Y的所有取值,全部都用了,详细的讲即为无论是计算在向量x条件下的任意一个Y值    ck,k=1,2....K,向量和c1.....ck都用到了,因此影响P(Y=ck|X=x)大小只有分子起作用,因此可得

        

  注:argmax指的是取概率最大的ck

  <6>其实到<5>朴素贝叶斯的整个过程已经完毕,但是其中的P(Y=ck)和P(X(j)=x(j)|Y=ck)的求解方法并没有说,二者得求解是根据极大似  然估计法来得其概率,即得如下公式:

   

  其中的I(..)是指示函数,当然这些概率在实际中可以很块求得,可以看如下得一个题,看完之后就知道这两个概率是怎么求了,公式推导  过程不赘述(具体过程我也不太清楚,不过看作类似二项分布得极大似然求值)

3、题-----一看就把上边得串起来了(直接贴图)

[机器学习&数据挖掘]朴素贝叶斯数学原理的更多相关文章

  1. Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)

    朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...

  2. 100天搞定机器学习|Day15 朴素贝叶斯

    Day15,开始学习朴素贝叶斯,先了解一下贝爷,以示敬意. 托马斯·贝叶斯 (Thomas Bayes),英国神学家.数学家.数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫:1742年成为英 ...

  3. 机器学习之朴素贝叶斯&贝叶斯网络

    贝叶斯决决策论       在所有相关概率都理想的情况下,贝叶斯决策论考虑基于这些概率和误判损失来选择最优标记,基本思想如下: (1)已知先验概率和类条件概率密度(似然) (2)利用贝叶斯转化为后验概 ...

  4. 机器学习:朴素贝叶斯--python

    今天介绍机器学习中一种基于概率的常见的分类方法,朴素贝叶斯,之前介绍的KNN, decision tree 等方法是一种 hard decision,因为这些分类器的输出只有0 或者 1,朴素贝叶斯方 ...

  5. 吴裕雄--天生自然python机器学习:朴素贝叶斯算法

    分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同 时给出这个猜测的概率估计值. 概率论是许多机器学习算法的基础 在计算 特征值取某个值的概率时涉及了一些概率知识,在那里我们先 ...

  6. 朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)

    朴素贝叶斯 算法介绍: 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法. 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我 ...

  7. 【机器学习实战】第4章 朴素贝叶斯(Naive Bayes)

    第4章 基于概率论的分类方法:朴素贝叶斯 朴素贝叶斯 概述 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本章首先介绍贝叶斯分类算法的基础——贝叶斯定理.最后,我们 ...

  8. Machine Learning in Action(3) 朴素贝叶斯算法

    贝叶斯决策一直很有争议,今年是贝叶斯250周年,历经沉浮,今天它的应用又开始逐渐活跃,有兴趣的可以看看斯坦福Brad Efron大师对其的反思,两篇文章:“Bayes'Theorem in the 2 ...

  9. scikit-learn 朴素贝叶斯类库使用小结

    之前在朴素贝叶斯算法原理小结这篇文章中,对朴素贝叶斯分类算法的原理做了一个总结.这里我们就从实战的角度来看朴素贝叶斯类库.重点讲述scikit-learn 朴素贝叶斯类库的使用要点和参数选择. 1. ...

随机推荐

  1. mysql 查询所有子节点的相关数据

    定义一个函数 ) CHARSET utf8 BEGIN ); ); SET sTemp = '$'; SET sTempChd =cast(rootId as CHAR); WHILE sTempCh ...

  2. Linux下C语言编程基础学习记录

    VIM的基本使用  LINUX下C语言编程 用gcc命令编译运行C语言文件 预处理阶段:将*.c文件转化为*.i预处理过的C程序. 编译阶段:将*.i文件编译为汇编代码*.s文件. 汇编阶段:将*.s ...

  3. Yale数据库上的人脸识别

    一.问题分析 1. 问题描述 在Yale数据集上完成以下工作:在给定的人脸库中,通过算法完成人脸识别,算法需要做到能判断出测试的人脸是否属于给定的数据集.如果属于,需要判断出测试的人脸属于数据集中的哪 ...

  4. 【助教】浅析log4j的使用

    有不少童鞋私信我一些在写代码时候遇到的问题,但是无法定位问题出在哪里,也没有日志记录,实际上,写日志是开发项目过程中很重要的一个环节,很多问题都可以从日志中找到根源,从而定位到出错位置,为解决问题提供 ...

  5. github优缺点

    以前bitbucket沒有支援git github可以直接在網站上瀏覽push的圖片 github 可以針對code行數直接留言與回覆 github Markdown支援很好 github 的issu ...

  6. Objective-C语言--self和super关键字解析

    看代码: @implementation Son : Father - (id)init{ self = [super init]; if (self){ } return self; } self是 ...

  7. [转帖]技术盛宴 | 关于PoE以太网供电技术详解

    技术盛宴 | 关于PoE以太网供电技术详解 https://smb.pconline.com.cn/1208/12085824.html   [PConline 干货铺]随着物联网技术飞速发展,需要提 ...

  8. java学习三 小数默认为double

    前++,后++在独立运算时候 直接计算出值 当后加加和减减和其他代码在一行的时候先使用加加和减减之前的值, 如果不在同一行,后面的一行就会得到加加或减减后的值 &&是逻辑运算符,逻辑运 ...

  9. poj1064 Cable master

    Description Inhabitants of the Wonderland have decided to hold a regional programming contest. The J ...

  10. 5Java异常处理

    五.异常 异常概念总结:   练习一:异常的体系    问题:    1. 请描述异常的继承体系    2. 请描述你对错误(Error)的理解    3. 请描述你对异常(Expection的理解) ...