【LOJ】#2526. 「HAOI2018」苹果树
题解
这计数题多水啊我怎么调了那么久啊
我不想老年化啊QAQ
(注意这里的二叉树带标号)
考虑\(g[i]\)表示\(i\)个点二叉树所有节点的深度和,\(f[i]\)表示\(i\)个点的二叉树两两节点之间的路径和
\(h[i]\)表示\(i\)个点的二叉树的方案数(实际上就是\(i!\)= =)
对于一个\(f[i]\)枚举左儿子大小\(j\),右儿子大小是\(i - j - 1\)
计算的时候就是
\(g[i] = \binom{i - 1}{j}(g[j] * h[i - j - 1] + g[i - j - 1] * h[j])\)
\(f[i] = \binom{i - 1}{j}(f[j] * h[i - j - 1] +f[i - j - 1] * h[j])\)
\(f[i] += \binom{i - 1}{j} (h[i - j - 1](g[j] + h[j] * j) + h[j](g[i - j - 1] + h[i - j - 1] * (i - j - 1)))\)
前面的组合数表示给左右儿子新分配的标号
左儿子大小为\(j\)时右儿子有\(h[i - j - 1]\)中形态或标号不同的树和它搭配
最后\(g[i] += h[i] * (i - 1)\)
然后\(f[i] += g[i]\)
表示新加入的根节点所产生新的路径
代码
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pdi pair<db,int>
#define mp make_pair
#define pb push_back
#define enter putchar('\n')
#define space putchar(' ')
#define eps 1e-8
#define MAXN 400005
#define mo 974711
//#define ivorysi
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,P;
int f[2005],g[2005],h[2005],C[2005][2005];
int inc(int a,int b) {
return a + b >= P ? a + b - P : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % P;
}
void update(int &x,int y) {
x = inc(x,y);
}
void Solve() {
read(N);read(P);
C[0][0] = 1;
for(int i = 1 ; i <= N ; ++i) {
C[i][0] = 1;
for(int j = 1 ; j <= i ; ++j) {
C[i][j] = inc(C[i - 1][j - 1],C[i - 1][j]);
}
}
h[0] = 1;h[1] = 1;
for(int i = 2 ; i <= N ; ++i) {
for(int j = 0 ; j < i ; ++j) {
int t = mul(mul(h[j] , h[i - j - 1]) , C[i - 1][j]);
update(h[i],t);
update(g[i],mul(inc(mul(g[j],h[i - j - 1]) , mul(g[i - j - 1],h[j])) , C[i - 1][j]));
update(g[i],mul(t,i - 1));
update(f[i],mul(inc(mul(f[j] , h[i - j - 1]), mul(f[i - j - 1] , h[j])) , C[i - 1][j]));
int ta = mul(i - j - 1 , inc(g[j] , mul(h[j],j)));
int tb = mul(j , inc(g[i - j - 1] , mul(h[i - j - 1] , i - j - 1)));
update(f[i],mul(inc(mul(ta,h[i - j - 1]) , mul(tb,h[j])) , C[i - 1][j]));
}
update(f[i],g[i]);
}
out(f[N]);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
【LOJ】#2526. 「HAOI2018」苹果树的更多相关文章
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
- Loj 3058. 「HNOI2019」白兔之舞
Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...
随机推荐
- 前端学习 -- Css -- 否定伪类
语法::not(.选择器) 作用:可以从已选中的元素中剔除出某些元素. <!DOCTYPE html> <html> <head> <meta charset ...
- 51nod 1667 概率好题
Description: 甲乙进行比赛. 他们各有k1,k2个集合[Li,Ri] 每次随机从他们拥有的每个集合中都取出一个数 S1=sigma甲取出的数,S2同理 若S1>S2甲胜 若S1=S2 ...
- 日志备份的shell脚本
以前工作中写的日志备份的脚本,现记录一下日志备份脚本代码,以后工作中遇到遇到需要备份或者清理日志的时候可以拿来简单修改一下使用,减少工作量. 把备份脚本添加到Linux定时任务中,可以定时执行. 日志 ...
- laravel 命令行测试 Uncaught ReflectionException: Class config does not exist
require __DIR__ . '/vendor/autoload.php'; $app = require_once __DIR__ . '/bootstrap/app.php'; config ...
- bzoj千题计划239:bzoj4069: [Apio2015]巴厘岛的雕塑
http://www.lydsy.com/JudgeOnline/problem.php?id=4069 a!=1: 从高位到低位一位一位的算 记录下哪些位必须为0 dp[i][j] 表示前i个数分为 ...
- hdu 5385 The path
http://acm.hdu.edu.cn/showproblem.php?pid=5385 题意: 给定一张n个点m条有向边的图,构造每条边的边权(边权为正整数),令d(x)表示1到x的最短路,使得 ...
- bzoj千题计划186:bzoj1048: [HAOI2007]分割矩阵
http://www.lydsy.com/JudgeOnline/problem.php?id=1048 #include<cmath> #include<cstdio> #i ...
- AngularJS入门基础——表达式
表达式在AngularJS应用中广泛的使用,因此深入理解AngularJS如何使用并运算表达式是非常重要的. 表达式和eval非常相似,但是由于表达式由AngularJS来处理,它们有已下显著不同 ...
- 关于z-index这个层级的问题
z-index它可真是一个神奇的东西,它可以随意安排你的层的叠加问题. 如你想让红色矩形压在蓝色矩形上,正常布局先建立一个红色的再建议一个蓝色的,就可以了. 但如果我相反来建立,那么就得借助z-ind ...
- 20155304 2016-2017-2 《Java程序设计》第七周学习总结
20155304 2016-2017-2 <Java程序设计>第七周学习总结 教材学习内容总结 1.时间的度量: 格林威治标准时间(GMT)通过观察太阳而得,其正午是太阳抵达天空最高点之时 ...