[BZOJ2138]stone[霍尔定理+线段树]
题意
一共有 \(n\) 堆石子,每堆石子有一个数量 \(a\) ,你要进行 \(m\) 次操作,每次操作你可以在满足前 \(i-1\) 次操作的回答的基础上选择在 \([L_i,R_i]\) 区间中拿走至多 \(b\) 颗石子,保证区间不存在包含关系,求每次你最多拿走多少颗石子。
\(n\le 4\times 10^4\)
分析
二分图匹配复杂度太高,考虑霍尔定理。
假设某次操作时我们已经知道了每次操作取走多少颗石子,我们选择判断的操作集合一定是按 \(L\) 排序之后连续的(因为能够选择的区间不相互包含),根据霍尔定理可以得到:
\[\sum\limits_{i=l}^rb(i)\le\sum\limits_{i=L(l)}^{R(r)}a(i)
\]\[sb(r)-sb(l-1)\le sa(R(r))-sa(L(l)-1)
\]其中 \(sa,sb\) 表示 \(a,b\) 的前缀和。
将位置相同的信息放到一起:
\[sb(r)-sa(R(r))\le sb(l-1)-sa(L(l)-1)
\]记 \(C(i)=sb(i)-sa(R(i))\),\(D=sb(i-1)-sa(L(i)-1)\)。
按照时间顺序处理操作。记某次操作按照 \(L\) 排序后所处的位置为 \(p\) 。拿走石子影响的一定是跨越 \(p\) 的连续区间。查询 \(p\) 右边操作的 \(C\) 的最大值 \(x\) 和左边 \(D\) 的最小值 \(y\) ,由于要满足 \(x\le y\) ,此次最多可以拿走 \(y-x\) 颗石子,这个可以用两棵线段树维护。
假设我们得到了这次的答案 \(ans\) ,维护 \(C\) 的线段树中 \([p,m]\) 区间和维护 \(D\) 的线段树中 \([p+1,m]\) 区间的 \(sb\) 都增加了 \(ans\) ,线段树区间修改即可。
总时间复杂度为 \(O(nlogn)\)。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline void Max(T &a, T b){if(a < b) a = b;}
template <typename T> inline void Min(T &a, T b){if(a > b) a = b;}
const int N = 4e4 + 7;
int n, m;
int a[N], R[N], L[N], sa[N], k[N], tt[N], rk[N];
#define Ls o << 1
#define Rs (o << 1 | 1)
struct sgt {
int adv[N << 2], val[N << 2], id;
void st1(int o, int v) {
adv[o] += v;
val[o] += v;
}
void pushdown(int o) {
if(adv[o]) {
st1(Ls, adv[o]);
st1(Rs, adv[o]);
}
adv[o] = 0;
}
void pushup(int o) {
if(!id) val[o] = max(val[Ls], val[Rs]);
else val[o] = min(val[Ls], val[Rs]);
}
void build(int l, int r, int o) {
if(l == r) {
if(!id) val[o] = -sa[R[tt[l]]];
else val[o] = -sa[L[tt[l]] - 1];
return;
}int mid = l + r >> 1;
build(l, mid, Ls);
build(mid + 1, r, Rs);
pushup(o);
}
void modify(int L, int R, int l, int r,int o, int v) {
if(L > R) return;
if(L <= l && r <= R) {
st1(o, v);
return;
}
pushdown(o);int mid = l + r >> 1;
if(L <= mid) modify(L, R, l, mid, Ls, v);
if(R > mid) modify(L, R, mid + 1, r, Rs, v);
pushup(o);
}
int query(int L, int R, int l, int r, int o) {
if(L > R) return 0;
if(L <= l && r <= R) return val[o];
pushdown(o);int mid = l + r >> 1;
if(R <= mid) return query(L, R, l, mid, Ls);
if(L > mid) return query(L, R, mid + 1, r, Rs);
if(!id) return max(query(L, R, l, mid, Ls), query(L, R, mid + 1, r, Rs));
else return min(query(L, R, l, mid, Ls), query(L, R, mid + 1, r, Rs));
}
}t[2];
bool cmp(int a, int b) {
return L[a] < L[b];
}
int main() {
n = gi();
int x = gi(), y = gi(), z = gi(), P = gi();
rep(i, 1, n) {
a[i] = ((i - x) * (i - x) + (i - y) * (i - y) + (i - z) * (i - z)) % P;
sa[i] = sa[i - 1] + a[i];
}
m = gi(), k[1] = gi(), k[2] = gi(), x = gi(), y = gi(), z = gi(), P = gi();
if(!m) return 0;
rep(i, 3, m) {
k[i] = (x * k[i - 1] + y * k[i - 2] + z) % P;
}
rep(i, 1, m) L[i] = gi(), R[i] = gi();
rep(i, 1, m) tt[i] = i;
sort(tt + 1, tt + 1 + m, cmp);
rep(i, 1, m) rk[tt[i]] = i;
t[1].id = 1; t[0].build(1, m, 1); t[1].build(1, m, 1);
rep(i, 1, m) {
int a = t[0].query(rk[i], m, 1, m, 1), b = t[1].query(1, rk[i], 1, m, 1);
int ans = min(b - a, k[i]);
printf("%d\n", ans);
t[0].modify(rk[i], m, 1, m, 1, ans);
t[1].modify(rk[i] + 1, m, 1, m, 1, ans);
}
return 0;
}
[BZOJ2138]stone[霍尔定理+线段树]的更多相关文章
- 【题解】 AtCoder ARC 076 F - Exhausted? (霍尔定理+线段树)
题面 题目大意: 给你\(m\)张椅子,排成一行,告诉你\(n\)个人,每个人可以坐的座位为\([1,l]\bigcup[r,m]\),为了让所有人坐下,问至少还要加多少张椅子. Solution: ...
- [BZOJ3693]圆桌会议[霍尔定理+线段树]
题意 题目链接 分析 又是一个二分图匹配的问题,考虑霍尔定理. 根据套路我们知道只需要检查 "区间的并是一段连续的区间" 这些子集. 首先将环倍长.考虑枚举答案的区间并的右端点 \ ...
- [BZOJ1135][POI2009]Lyz[霍尔定理+线段树]
题意 题目链接 分析 这个二分图匹配模型直接建图的复杂度太高,考虑霍尔定理. 对于某些人组成的区间,我们只需要考虑他们的并是一段连续的区间的集合.更进一步地,我们考虑的人一定是连续的. 假设我们考虑的 ...
- 【AtCoder ARC076】F Exhausted? 霍尔定理+线段树
题意 N个人抢M个椅子,M个椅子排成一排 ,第i个人只能坐[1,Li]∪[Ri,M],问最多能坐多少人 $i$人连边向可以坐的椅子构成二分图,题意即是求二分图最大完美匹配,由霍尔定理,答案为$max( ...
- 【BZOJ2138】stone Hall定理+线段树
[BZOJ2138]stone Description 话说Nan在海边等人,预计还要等上M分钟.为了打发时间,他玩起了石子.Nan搬来了N堆石子,编号为1到N,每堆包含Ai颗石子.每1分钟,Nan会 ...
- [arc076F]Exhausted?[霍尔定理+线段树]
题意 地上 \(1\) 到 \(m\) 个位置摆上椅子,有 \(n\) 个人要就座,每个人都有座位癖好:选择 \(\le L\) 或者 \(\ge R\) 的位置.问至少需要在两边添加多少个椅子能让所 ...
- [BZOJ2138]stone(Hall定理,线段树)
Description 话说Nan在海边等人,预计还要等上M分钟.为了打发时间,他玩起了石子.Nan搬来了N堆石子,编号为1到N,每堆 包含Ai颗石子.每1分钟,Nan会在编号在\([L_i,R_i] ...
- LOJ.6062.[2017山东一轮集训]Pair(Hall定理 线段树)
题目链接 首先Bi之间的大小关系没用,先对它排序,假设从小到大排 那么每个Ai所能匹配的Bi就是一个B[]的后缀 把一个B[]后缀的匹配看做一条边的覆盖,设Xi为Bi被覆盖的次数 容易想到 对于每个i ...
- BZOJ.3693.圆桌会议(Hall定理 线段树)
题目链接 先考虑链.题目相当于求是否存在完备匹配.那么由Hall定理,对于任意一个区间[L,R],都要满足[li,ri]完全在[L,R]中的ai之和sum小于等于总位置数,即R-L+1.(其实用不到H ...
随机推荐
- AOP编程报错Xlint:invalidAbsoluteTypeName
@Component@Aspectpublic class DingdingAspect { private Logger logger = LoggerFactory.getLogger(this. ...
- Ubuntu 16.04 Server 设置静态IP
一.前言 最近需要在虚拟机当中装个Ubuntu Server 16.04的系统,但是在虚拟机安装的时候,并不像Ubuntu Server 18.04那样能一步步的进行配置,因此导致装好后的虚拟机是动态 ...
- APP性能测试指标和测试方法
流量 常用方法 方法一:Android系统自带统计功能(总体流量数值) Proc/uid_stat/{UID}/tcp_snd和tcp_rcv UID是每个app安装时候分配的唯一编号用于识别该app ...
- STL之容器(containers) 简介
什么是容器? 容器用来存储数据的,数据可以是用户自定义类型(对象),也可以是预定义类型,c++中的容器主要使用如vector,list (顺序容器) 这些都是已经封装好了. 1.结构(struct): ...
- Python抓取zabbix性能监控图
一.通过查询zabbix db的方式通过主机IP获取到所需要的graphid(比如CPU监控图.内存监控图等,每个图对应一个graphid),最后将图片保存到本地 注:该graph必须要在 scree ...
- vbs常用函数
aa '删除文件夹 sub DeleteFolder(objFolder) call OutputLog(objFolder.Path,true) err.Clear On Error Resume ...
- 服务器上u盘装机centos7.2
说明: 截止目前CentOS 7.x最新版本为CentOS 7.2.1511,下面介绍CentOS 7.2.1511的具体安装配置过程 服务器相关设置如下: 操作系统:CentOS 7.2.1511 ...
- POJ 1066 昂贵的聘礼
Description 年轻的探险家来到了一个印第安部落里. 在那里他和酋长的女儿相爱了,于是便向酋长去求亲.酋长要他用10000个金币作为聘礼才答应把女儿嫁给他.探险家拿不出这么多金币,便请求酋长减 ...
- Jenkins RCE(CVE-2018-1000861)
先说通过IDEA利用JPDA远程调试tomcat程序 在catalina.sh添加,或者catalina.bat内容不动用如下命令开启,默认是开启8000端口 set JAVA_OPTS=-Xdebu ...
- MetaMask/provider-engine-3-test
通过看其test的代码去好好看看它是怎么使用的 1. provider-engine/test/basic.js const test = require('tape') const Provider ...