78. Subsets

Given a set of distinct integers, nums, return all possible subsets.

Note: The solution set must not contain duplicate subsets.

For example,
If nums = [,,], a solution is: [
[],
[],
[],
[,,],
[,],
[,],
[,],
[]
]
class Solution
{
public:
vector<vector<int>> subsets(vector<int>& nums)
{
const size_t n = nums.size();
vector<int> v;
vector<vector<int> > result;
for (int i = ; i < <<n; ++i)
{
for (int j = ; j < n; ++j)
{
if(i & << j) v.push_back(nums[j]);
}
result.push_back(v);
v.clear();
}
return result;
}
};

3ms

迭代,增量构造.没看懂

http://www.cnblogs.com/TenosDoIt/p/3451902.html

class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
sort(S.begin(), S.end());
vector<vector<int> > result();
for (auto elem : S) {
result.reserve(result.size() * );
auto half = result.begin() + result.size();
copy(result.begin(), half, back_inserter(result));
for_each(half, result.end(), [&elem](decltype(result[]) &e){
e.push_back(elem);
});
}
return result;
}
};

3ms

位向量法

class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
sort(S.begin(), S.end()); //
vector<vector<int> > result;
vector<bool> selected(S.size(), false);
subsets(S, selected, , result);
return result;
}
private:
static void subsets(const vector<int> &S, vector<bool> &selected, int step,
vector<vector<int> > &result) {
if (step == S.size()) {
vector<int> subset;
for (int i = ; i < S.size(); i++) {
if (selected[i]) subset.push_back(S[i]);
}
result.push_back(subset);
return;
}
//S[step]
selected[step] = false;
subsets(S, selected, step + , result);
//S[step]
selected[step] = true;
subsets(S, selected, step + , result);
}
};

6ms

class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
sort(S.begin(), S.end()); //
vector<vector<int> > result;
vector<int> path;
subsets(S, path, , result);
return result;
}
private:
static void subsets(const vector<int> &S, vector<int> &path, int step,
vector<vector<int> > &result) {
if (step == S.size()) {
result.push_back(path);
return;
}
//S[step]
subsets(S, path, step + , result);
//S[step]
path.push_back(S[step]);
subsets(S, path, step + , result);
path.pop_back();
}
};

6ms

解题思路

Iterative

This problem can also be solved iteratively. Take [, , ] in the problem statement as an example. The process of generating all the subsets is like:

Initially: [[]]
Adding the first number to all the existed subsets: [[], []];
Adding the second number to all the existed subsets: [[], [], [], [, ]];
Adding the third number to all the existed subsets: [[], [], [], [, ], [], [, ], [, ], [, , ]].
Have you got the idea :-) The code is as follows. class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<vector<int>> subs(, vector<int>());
for (int i = ; i < nums.size(); i++) {
int n = subs.size();
for (int j = ; j < n; j++) {
subs.push_back(subs[j]);
subs.back().push_back(nums[i]);
}
}
return subs;
}
};

 // Recursion.
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res;
vector<int> out;
sort(S.begin(), S.end());
getSubsets(S, , out, res);
return res;
}
void getSubsets(vector<int> &S, int pos, vector<int> &out, vector<vector<int> > &res) {
res.push_back(out);
for (int i = pos; i < S.size(); ++i) {
//if (i != pos && S[i] == S[i-1]) continue;//subsets II
out.push_back(S[i]);
getSubsets(S, i + , out, res);
out.pop_back();
//while (S[i] == S[i + 1]) ++i; //subsets II
}
}
};

#include <bits/stdc++.h>

using namespace std;

class Solution {
public:
vector<vector<int> > subsetsWithDup(vector<int> &S) {
sort(S.begin(), S.end()); // ????
vector<vector<int> > result;
vector<int> path;
dfs(S, S.begin(), path, result);
for (int i = ; i < result.size(); ++i) {
for (int j = ; j < result[i].size(); ++j) {
printf("%d ", result[i][j]);
}printf("\n");
}
return result;
}
private:
static void dfs(const vector<int> &S, vector<int>::iterator start,
vector<int> &path, vector<vector<int> > &result) {
result.push_back(path);
printf("@@@@@@@@@@Line:%d start:%d\n", __LINE__, *start);
for (auto i = start; i < S.end(); i++) {
printf("i:%d\n", *i);
if (i != start && *i == *(i-))
{
printf("Continue****LINE:%d start:%d i:%d\n", __LINE__, *start, *i);
continue;
}
path.push_back(*i);
dfs(S, i + , path, result); for(auto xx : path) printf("BEFORE:%d ", xx);
printf("\nLINE:%d start:%d i:%d\n", __LINE__, *start, *i);
path.pop_back(); for (auto xx : path) printf("AFTER:%d ", xx); printf("\n");
}
}
}; int main(int argc, char *argv[])
{
vector<int> v{,,};
Solution sn;
sn.subsetsWithDup(v);
//printf("%d %d\n",v[0],v.size());
return ;
}

同类回溯算法问题归纳: by issac3

This structure might apply to many other backtracking questions, but here I am just going to demonstrate Subsets, Permutations, and Combination Sum.

Subsets : https://leetcode.com/problems/subsets/

public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, );
return list;
} private void backtrack(List<List<Integer>> list , List<Integer> tempList, int [] nums, int start){
list.add(new ArrayList<>(tempList));
for(int i = start; i < nums.length; i++){
tempList.add(nums[i]);
backtrack(list, tempList, nums, i + );
tempList.remove(tempList.size() - );
}
}

Subsets II (contains duplicates) : https://leetcode.com/problems/subsets-ii/

public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, );
return list;
} private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int start){
list.add(new ArrayList<>(tempList));
for(int i = start; i < nums.length; i++){
if(i > start && nums[i] == nums[i-]) continue; // skip duplicates
tempList.add(nums[i]);
backtrack(list, tempList, nums, i + );
tempList.remove(tempList.size() - );
}
}

Permutations : https://leetcode.com/problems/permutations/

public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
// Arrays.sort(nums); // not necessary
backtrack(list, new ArrayList<>(), nums);
return list;
} private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums){
if(tempList.size() == nums.length){
list.add(new ArrayList<>(tempList));
} else{
for(int i = ; i < nums.length; i++){
if(tempList.contains(nums[i])) continue; // element already exists, skip
tempList.add(nums[i]);
backtrack(list, tempList, nums);
tempList.remove(tempList.size() - );
}
}
}

Permutations II (contains duplicates) : https://leetcode.com/problems/permutations-ii/

public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, new boolean[nums.length]);
return list;
} private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, boolean [] used){
if(tempList.size() == nums.length){
list.add(new ArrayList<>(tempList));
} else{
for(int i = ; i < nums.length; i++){
if(used[i] || i > && nums[i] == nums[i-] && !used[i - ]) continue;
used[i] = true;
tempList.add(nums[i]);
backtrack(list, tempList, nums, used);
used[i] = false;
tempList.remove(tempList.size() - );
}
}
}

Combination Sum : https://leetcode.com/problems/combination-sum/

public List<List<Integer>> combinationSum(int[] nums, int target) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, target, );
return list;
} private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int remain, int start){
if(remain < ) return;
else if(remain == ) list.add(new ArrayList<>(tempList));
else{
for(int i = start; i < nums.length; i++){
tempList.add(nums[i]);
backtrack(list, tempList, nums, remain - nums[i], i); // not i + 1 because we can reuse same elements
tempList.remove(tempList.size() - );
}
}
}

Combination Sum II (can't reuse same element) : https://leetcode.com/problems/combination-sum-ii/

public List<List<Integer>> combinationSum2(int[] nums, int target) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, target, );
return list; } private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int remain, int start){
if(remain < ) return;
else if(remain == ) list.add(new ArrayList<>(tempList));
else{
for(int i = start; i < nums.length; i++){
if(i > start && nums[i] == nums[i-]) continue; // skip duplicates
tempList.add(nums[i]);
backtrack(list, tempList, nums, remain - nums[i], i + );
tempList.remove(tempList.size() - );
}
}
}

Palindrome Partitioning : https://leetcode.com/problems/palindrome-partitioning/

public List<List<String>> partition(String s) {
List<List<String>> list = new ArrayList<>();
backtrack(list, new ArrayList<>(), s, );
return list;
} public void backtrack(List<List<String>> list, List<String> tempList, String s, int start){
if(start == s.length())
list.add(new ArrayList<>(tempList));
else{
for(int i = start; i < s.length(); i++){
if(isPalindrome(s, start, i)){
tempList.add(s.substring(start, i + ));
backtrack(list, tempList, s, i + );
tempList.remove(tempList.size() - );
}
}
}
} public boolean isPalindrome(String s, int low, int high){
while(low < high)
if(s.charAt(low++) != s.charAt(high--)) return false;
return true;
}
/*Without any crap! Hit the road!

Since we have to collect all the possible sets that meet the requirements -> a palindrome; so traversing the whole possible paths will be definitely the case -> using DFS and backtracking seems to be on the table.

try from the start index of the string till any index latter and then check its validity - a palindrome? from the start index till the ending?
if so, we need to store it in a stack for latter collection and then traverse further starting from the previous ending index exclusively and begin the checking again and on and on till the start index is beyond the string;
at that time we are to collect the palindromes along the paths.
Several stuff should be specified: checking whether a string is palindrome is quite simple in C using pointer;
using DP might not help a lot since the checking process is quite fast while DP will require extra work to record and space allocation and so on.
In the end, let's check its space and time consumption: space cost O(n*2^n) -> one set of palindrome will take about O(n) but the amount of sets is dependent on the original string itself.
time cost O(n*2^n) -> collecting them while using the space to store them so the space and time cost should be linearly proportional; since the range can be varied a lot depending on the actual provided string so the performance might not be a problem. by LHearen
4ms in us. 72ms in cn.
*/ void traverse(char* s, int len, int begin, char** stack, int top, char**** arrs, int** colSizes, int* returnSize)
{
if(begin == len) //there is nothing left, collect the strings of a set;
{
*returnSize += ;
*colSizes = (int*)realloc(*colSizes, sizeof(int)*(*returnSize));
int size = top+;
(*colSizes)[*returnSize-] = size;
*arrs = (char***)realloc(*arrs, sizeof(char**)*(*returnSize));
(*arrs)[*returnSize-] = (char**)malloc(sizeof(char*)*size);
for(int i = ; i < size; i++)
(*arrs)[*returnSize-][i] = stack[i];
return ;
}
for(int i = begin; i < len; i++) //check each string that begin with s[begin];
{
int l=begin, r=i;
while(l<r && s[l]==s[r]) l++, r--;
if(l >= r) //it's a palindrome;
{
int size = i-begin+;
char *t = (char*)malloc(sizeof(char)*(size+));
*t = '\0';
strncat(t, s+begin, size);
stack[top+] = t;
traverse(s, len, i+, stack, top+, arrs, colSizes, returnSize); //collect the left;
}
}
} char*** partition(char* s, int** colSizes, int* returnSize)
{
if(!*s) return NULL;
int len = strlen(s);
*returnSize = ;
*colSizes = (char*)malloc(sizeof(char));
char*** arrs = (char***)malloc(sizeof(char**));
char** stack = (char**)malloc(sizeof(char*)*len);
int top = -;
traverse(s, strlen(s), , stack, top, &arrs, colSizes, returnSize);
return arrs;
}
public class Solution {
public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
boolean[][] dp = new boolean[s.length()][s.length()];
for(int i = 0; i < s.length(); i++) {
for(int j = 0; j <= i; j++) {
if(s.charAt(i) == s.charAt(j) && (i - j <= 2 || dp[j+1][i-1])) {
dp[j][i] = true;
}
}
}
helper(res, new ArrayList<>(), dp, s, 0);
return res;
} private void helper(List<List<String>> res, List<String> path, boolean[][] dp, String s, int pos) {
if(pos == s.length()) {
res.add(new ArrayList<>(path));
return;
} for(int i = pos; i < s.length(); i++) {
if(dp[pos][i]) {
path.add(s.substring(pos,i+1));
helper(res, path, dp, s, i+1);
path.remove(path.size()-1);
}
}
}
} /*
The normal dfs backtracking will need to check each substring for palindrome, but a dp array can be used to record the possible break for palindrome before we start recursion. Edit:
Sharing my thought process:
first, I ask myself that how to check if a string is palindrome or not, usually a two point solution scanning from front and back. Here if you want to get all the possible palindrome partition, first a nested for loop to get every possible partitions for a string, then a scanning for all the partitions. That's a O(n^2) for partition and O(n^2) for the scanning of string, totaling at O(n^4) just for the partition. However, if we use a 2d array to keep track of any string we have scanned so far, with an addition pair, we can determine whether it's palindrome or not by justing looking at that pair, which is this line if(s.charAt(i) == s.charAt(j) && (i - j <= 2 || dp[j+1][i-1])). This way, the 2d array dp contains the possible palindrome partition among all. second, based on the prescanned palindrome partitions saved in dp array, a simple backtrack does the job. Java DP + DFS solution by yfcheng
*/
bool isPalin(char* s, int end);
void helper(char* s, char*** ret, int** colS, int* retS, char** cur, int k ); char*** partition(char* s, int** colS, int* retS)
{
*retS = ;
if(s == NULL || !strcmp(s, "")) return NULL; /* I know ... I hate static mem alloc as well */
*colS = (int*)malloc(sizeof(int)*);
char*** ret = (char***)malloc(sizeof(char**) * );
int len = strlen(s)+; char** cur = (char**)malloc(sizeof(char*) * );
for(int i = ; i<; i++)
cur[i] = (char*)malloc(len); /* backtracking starting from s[0] */
helper(s, ret, colS, retS, cur, ); return ret;
} void helper(char* s, char*** ret, int** colS, int* retS, char** cur, int k )
{
/* termination if already at the end of string s
we found a partition */
if(*s == )
{
ret[*retS] = (char**)malloc(sizeof(char*)*k);
for(int i = ; i<k; i++)
{
ret[*retS][i] = (char*)malloc(strlen(cur[i]) + );
strcpy(ret[*retS][i], cur[i]);
}
(*colS)[(*retS)++] = k;
return;
} /* explore next */
int len = strlen(s);
for(int i = ; i < len; i++)
{
if(isPalin(s, i))
{
/* put it into the cur list */
strncpy(cur[k], s, i+);
cur[k][i+] = '\0'; /* backtracking */
helper(s+i+, ret, colS, retS, cur, k+);
}
}
} bool isPalin(char* s, int end)
{
/* printf("error: start %d, end %d\n", start, end); */
if(end < ) return false;
int start = ;
while(end > start)
{
if(s[start] != s[end]) return false;
start++; end--;
}
return true;
} // by zcjsword Created at: September 11, 2015 5:12 AM
char*** result;
int head; int check(char* s,int left,int right){
while(s[left]==s[right]){
left++,right--;
}
return left>=right;
} int getResult(char* s,int left,int right,int path[],int index,int* colSize){
//printf("%d %d\n",left,right);
if(left>right){
char** list=(char**)malloc(sizeof(char*));
int h=; for(int i=index-;i>;i--){
char* tmp=(char*)malloc(sizeof(char)*(path[i-]-path[i]+));
int count=;
for(int j=path[i];j<path[i-];j++){
tmp[count++]=s[j];
}
tmp[count]='\0';
list[h++]=tmp;
list=(char**)realloc(list,sizeof(char*)*(h+));
}
colSize[head]=h;
result[head++]=list;
result=(char***)realloc(result,sizeof(char**)*(head+)); }
for(int i=right;i>=left;i--){
if(check(s,i,right)){
path[index]=i;
getResult(s,left,i-,path,index+,colSize);
}
}
return ;
} char*** partition(char* s, int** columnSizes, int* returnSize) {
result=(char***)malloc(sizeof(char**));
head=;
int path[];
*columnSizes=(int*)malloc(sizeof(int)*);
path[]=strlen(s);
getResult(s,,path[]-,path,,*columnSizes);
*returnSize=head;
return result;
}
// 28ms example
#define MAXCOL 1000
void DFS(char *s,int startIndex,char **temp_result,char ***result,
int len,int** columnSizes, int* returnSize)
{
int i,j;
if(startIndex >= len)
{
for(i = ;i < (*columnSizes)[*returnSize];i ++)
{
for(j = ;temp_result[i][j] != '\0';j ++)
{
result[*returnSize][i][j] = temp_result[i][j];
}
result[*returnSize][i][j] = '\0';
}
*returnSize += ;
(*columnSizes)[*returnSize] = (*columnSizes)[*returnSize-];
}
for(i = startIndex;i < len;i ++)
{
int left = startIndex;
int right = i;
while(left <= right && s[left]==s[right])
{
left ++;
right --;
}
if(left >= right)
{
strncpy(temp_result[(*columnSizes)[*returnSize]],s+startIndex,i - startIndex + );
temp_result[(*columnSizes)[*returnSize]][i - startIndex + ] = '\0';
(*columnSizes)[*returnSize] += ;
//printf("OK\n");
DFS(s,i+,temp_result,result,len,columnSizes,returnSize);
(*columnSizes)[*returnSize] -= ;
}
}
} char*** partition(char* s, int** columnSizes, int* returnSize) {
int i,j,k;
int len = strlen(s);
char ***result = malloc(MAXCOL*sizeof(char**));
for(i = ;i < MAXCOL;i ++)
{
result[i] = malloc(len*sizeof(char*));
for(j = ;j < len;j ++)
{
result[i][j] = malloc(len*sizeof(char));
}
}
char **temp_result = malloc(len*sizeof(char*));
for(i = ;i < len;i ++)
{
temp_result[i] = malloc(len*sizeof(char));
}
*columnSizes = calloc(MAXCOL,sizeof(int));
*returnSize = ;
DFS(s,,temp_result,result,len,columnSizes,returnSize);
return result;
}
// 52ms example

78. Subsets(M) & 90. Subsets II(M) & 131. Palindrome Partitioning的更多相关文章

  1. leetcode 131. Palindrome Partitioning 、132. Palindrome Partitioning II

    131. Palindrome Partitioning substr使用的是坐标值,不使用.begin()..end()这种迭代器 使用dfs,类似于subsets的题,每次判断要不要加入这个数 s ...

  2. Leetcode 22. Generate Parentheses Restore IP Addresses (*) 131. Palindrome Partitioning

    backtracking and invariant during generating the parathese righjt > left  (open bracket and cloas ...

  3. leetcode 78. Subsets 、90. Subsets II

    第一题是输入数组的数值不相同,第二题是输入数组的数值有相同的值,第二题在第一题的基础上需要过滤掉那些相同的数值. level代表的是需要进行选择的数值的位置. 78. Subsets 错误解法: cl ...

  4. 131. Palindrome Partitioning(回文子串划分 深度优先)

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  5. [LeetCode] 131. Palindrome Partitioning 回文分割

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  6. Leetcode 131. Palindrome Partitioning

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  7. 131. Palindrome Partitioning

    题目: Given a string s, partition s such that every substring of the partition is a palindrome. Return ...

  8. [leetcode]131. Palindrome Partitioning字符串分割成回文子串

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  9. 【LeetCode】131. Palindrome Partitioning

    Palindrome Partitioning Given a string s, partition s such that every substring of the partition is ...

随机推荐

  1. POJ1080

    一道字符串DP,然而不需要状压之类的玄学操作 题目大意:给你两个串,由'A','C','G','T'组成,现在你可以在这两个串中的某些位置插入'-',最终要使得它们的长度相等 给出两个字符匹配时的匹配 ...

  2. [原创]STM32 BOOT模式配置以及作用

    一.三种BOOT模式介绍 所谓启动,一般来说就是指我们下好程序后,重启芯片时,SYSCLK的第4个上升沿,BOOT引脚的值将被锁存.用户可以通过设置BOOT1和BOOT0引脚的状态,来选择在复位后的启 ...

  3. REST-framework快速构建API--认证

    一.API使用流程 使用过API的同学都知道,我们不可能任意调用人家的API,因为通过API可以获取很多关键数据,而且这个API可能供多个部门或个人使用,所以必须是经过授权的用户才能调用. API的使 ...

  4. bodymovin实现将AE动画转换成HTML5动画

    做一个简单的记录,直接贴代码吧,主要还是设计师提供的那个json <!DOCTYPE html> <html> <head> <style> body ...

  5. 【分享】熟练的Java程序员应该掌握哪些技术?

    Java程序员应该掌握哪些能力才能算是脱离菜鸟达到熟练的程度? 1.语法:Java程序员必须比较熟悉语法,在写代码的时候IDE的编辑器对某一行报错应该能够根据报错信息 知道是什么样的语法错误并且知道任 ...

  6. docker之搭建LNMP

    一.部署mysql [root@node03 web]# docker run -itd --name lnmp_mysql -p 3308:3306 -e MYSQL_ROOT_PASSWORD=1 ...

  7. Python包下载超时问题解决

    pip下载模块慢解决办法 由于pip安装默认的访问地址为 http://pypi.python.org/simple/经常会有网络不稳定和速度慢的现象,出现timeout报错,因此可以改为访问国内的地 ...

  8. PAT甲级题解-1097. Deduplication on a Linked List (25)-链表的删除操作

    给定一个链表,你需要删除那些绝对值相同的节点,对于每个绝对值K,仅保留第一个出现的节点.删除的节点会保留在另一条链表上.简单来说就是去重,去掉绝对值相同的那些.先输出删除后的链表,再输出删除了的链表. ...

  9. Alpha 冲刺二

    团队成员 051601135 岳冠宇 051604103 陈思孝 031602629 刘意晗 031602248 郑智文 031602234 王淇 会议照片 项目燃尽图 项目进展 暂无进展, 项目描述 ...

  10. #Leetcode# 373. Find K Pairs with Smallest Sums

    https://leetcode.com/problems/find-k-pairs-with-smallest-sums/ You are given two integer arrays nums ...