78. Subsets(M) & 90. Subsets II(M) & 131. Palindrome Partitioning
Given a set of distinct integers, nums, return all possible subsets. Note: The solution set must not contain duplicate subsets. For example,
If nums = [,,], a solution is: [
[],
[],
[],
[,,],
[,],
[,],
[,],
[]
]
class Solution
{
public:
vector<vector<int>> subsets(vector<int>& nums)
{
const size_t n = nums.size();
vector<int> v;
vector<vector<int> > result;
for (int i = ; i < <<n; ++i)
{
for (int j = ; j < n; ++j)
{
if(i & << j) v.push_back(nums[j]);
}
result.push_back(v);
v.clear();
}
return result;
}
};
3ms
迭代,增量构造.没看懂
http://www.cnblogs.com/TenosDoIt/p/3451902.html
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
sort(S.begin(), S.end());
vector<vector<int> > result();
for (auto elem : S) {
result.reserve(result.size() * );
auto half = result.begin() + result.size();
copy(result.begin(), half, back_inserter(result));
for_each(half, result.end(), [&elem](decltype(result[]) &e){
e.push_back(elem);
});
}
return result;
}
};
3ms
位向量法
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
sort(S.begin(), S.end()); //
vector<vector<int> > result;
vector<bool> selected(S.size(), false);
subsets(S, selected, , result);
return result;
}
private:
static void subsets(const vector<int> &S, vector<bool> &selected, int step,
vector<vector<int> > &result) {
if (step == S.size()) {
vector<int> subset;
for (int i = ; i < S.size(); i++) {
if (selected[i]) subset.push_back(S[i]);
}
result.push_back(subset);
return;
}
//S[step]
selected[step] = false;
subsets(S, selected, step + , result);
//S[step]
selected[step] = true;
subsets(S, selected, step + , result);
}
};

6ms
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
sort(S.begin(), S.end()); //
vector<vector<int> > result;
vector<int> path;
subsets(S, path, , result);
return result;
}
private:
static void subsets(const vector<int> &S, vector<int> &path, int step,
vector<vector<int> > &result) {
if (step == S.size()) {
result.push_back(path);
return;
}
//S[step]
subsets(S, path, step + , result);
//S[step]
path.push_back(S[step]);
subsets(S, path, step + , result);
path.pop_back();
}
};

6ms
Iterative This problem can also be solved iteratively. Take [, , ] in the problem statement as an example. The process of generating all the subsets is like: Initially: [[]]
Adding the first number to all the existed subsets: [[], []];
Adding the second number to all the existed subsets: [[], [], [], [, ]];
Adding the third number to all the existed subsets: [[], [], [], [, ], [], [, ], [, ], [, , ]].
Have you got the idea :-) The code is as follows. class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<vector<int>> subs(, vector<int>());
for (int i = ; i < nums.size(); i++) {
int n = subs.size();
for (int j = ; j < n; j++) {
subs.push_back(subs[j]);
subs.back().push_back(nums[i]);
}
}
return subs;
}
};

// Recursion.
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res;
vector<int> out;
sort(S.begin(), S.end());
getSubsets(S, , out, res);
return res;
}
void getSubsets(vector<int> &S, int pos, vector<int> &out, vector<vector<int> > &res) {
res.push_back(out);
for (int i = pos; i < S.size(); ++i) {
//if (i != pos && S[i] == S[i-1]) continue;//subsets II
out.push_back(S[i]);
getSubsets(S, i + , out, res);
out.pop_back();
//while (S[i] == S[i + 1]) ++i; //subsets II
}
}
};

#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
vector<vector<int> > subsetsWithDup(vector<int> &S) {
sort(S.begin(), S.end()); // ????
vector<vector<int> > result;
vector<int> path;
dfs(S, S.begin(), path, result);
for (int i = ; i < result.size(); ++i) {
for (int j = ; j < result[i].size(); ++j) {
printf("%d ", result[i][j]);
}printf("\n");
}
return result;
}
private:
static void dfs(const vector<int> &S, vector<int>::iterator start,
vector<int> &path, vector<vector<int> > &result) {
result.push_back(path);
printf("@@@@@@@@@@Line:%d start:%d\n", __LINE__, *start);
for (auto i = start; i < S.end(); i++) {
printf("i:%d\n", *i);
if (i != start && *i == *(i-))
{
printf("Continue****LINE:%d start:%d i:%d\n", __LINE__, *start, *i);
continue;
}
path.push_back(*i);
dfs(S, i + , path, result); for(auto xx : path) printf("BEFORE:%d ", xx);
printf("\nLINE:%d start:%d i:%d\n", __LINE__, *start, *i);
path.pop_back(); for (auto xx : path) printf("AFTER:%d ", xx); printf("\n");
}
}
};
int main(int argc, char *argv[])
{
vector<int> v{,,};
Solution sn;
sn.subsetsWithDup(v);
//printf("%d %d\n",v[0],v.size());
return ;
}

This structure might apply to many other backtracking questions, but here I am just going to demonstrate Subsets, Permutations, and Combination Sum.
Subsets : https://leetcode.com/problems/subsets/
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, );
return list;
}
private void backtrack(List<List<Integer>> list , List<Integer> tempList, int [] nums, int start){
list.add(new ArrayList<>(tempList));
for(int i = start; i < nums.length; i++){
tempList.add(nums[i]);
backtrack(list, tempList, nums, i + );
tempList.remove(tempList.size() - );
}
}
Subsets II (contains duplicates) : https://leetcode.com/problems/subsets-ii/
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, );
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int start){
list.add(new ArrayList<>(tempList));
for(int i = start; i < nums.length; i++){
if(i > start && nums[i] == nums[i-]) continue; // skip duplicates
tempList.add(nums[i]);
backtrack(list, tempList, nums, i + );
tempList.remove(tempList.size() - );
}
}
Permutations : https://leetcode.com/problems/permutations/
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
// Arrays.sort(nums); // not necessary
backtrack(list, new ArrayList<>(), nums);
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums){
if(tempList.size() == nums.length){
list.add(new ArrayList<>(tempList));
} else{
for(int i = ; i < nums.length; i++){
if(tempList.contains(nums[i])) continue; // element already exists, skip
tempList.add(nums[i]);
backtrack(list, tempList, nums);
tempList.remove(tempList.size() - );
}
}
}
Permutations II (contains duplicates) : https://leetcode.com/problems/permutations-ii/
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, new boolean[nums.length]);
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, boolean [] used){
if(tempList.size() == nums.length){
list.add(new ArrayList<>(tempList));
} else{
for(int i = ; i < nums.length; i++){
if(used[i] || i > && nums[i] == nums[i-] && !used[i - ]) continue;
used[i] = true;
tempList.add(nums[i]);
backtrack(list, tempList, nums, used);
used[i] = false;
tempList.remove(tempList.size() - );
}
}
}
Combination Sum : https://leetcode.com/problems/combination-sum/
public List<List<Integer>> combinationSum(int[] nums, int target) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, target, );
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int remain, int start){
if(remain < ) return;
else if(remain == ) list.add(new ArrayList<>(tempList));
else{
for(int i = start; i < nums.length; i++){
tempList.add(nums[i]);
backtrack(list, tempList, nums, remain - nums[i], i); // not i + 1 because we can reuse same elements
tempList.remove(tempList.size() - );
}
}
}
Combination Sum II (can't reuse same element) : https://leetcode.com/problems/combination-sum-ii/
public List<List<Integer>> combinationSum2(int[] nums, int target) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, target, );
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int remain, int start){
if(remain < ) return;
else if(remain == ) list.add(new ArrayList<>(tempList));
else{
for(int i = start; i < nums.length; i++){
if(i > start && nums[i] == nums[i-]) continue; // skip duplicates
tempList.add(nums[i]);
backtrack(list, tempList, nums, remain - nums[i], i + );
tempList.remove(tempList.size() - );
}
}
}
Palindrome Partitioning : https://leetcode.com/problems/palindrome-partitioning/
public List<List<String>> partition(String s) {
List<List<String>> list = new ArrayList<>();
backtrack(list, new ArrayList<>(), s, );
return list;
}
public void backtrack(List<List<String>> list, List<String> tempList, String s, int start){
if(start == s.length())
list.add(new ArrayList<>(tempList));
else{
for(int i = start; i < s.length(); i++){
if(isPalindrome(s, start, i)){
tempList.add(s.substring(start, i + ));
backtrack(list, tempList, s, i + );
tempList.remove(tempList.size() - );
}
}
}
}
public boolean isPalindrome(String s, int low, int high){
while(low < high)
if(s.charAt(low++) != s.charAt(high--)) return false;
return true;
}
/*Without any crap! Hit the road! Since we have to collect all the possible sets that meet the requirements -> a palindrome; so traversing the whole possible paths will be definitely the case -> using DFS and backtracking seems to be on the table. try from the start index of the string till any index latter and then check its validity - a palindrome? from the start index till the ending?
if so, we need to store it in a stack for latter collection and then traverse further starting from the previous ending index exclusively and begin the checking again and on and on till the start index is beyond the string;
at that time we are to collect the palindromes along the paths.
Several stuff should be specified: checking whether a string is palindrome is quite simple in C using pointer;
using DP might not help a lot since the checking process is quite fast while DP will require extra work to record and space allocation and so on.
In the end, let's check its space and time consumption: space cost O(n*2^n) -> one set of palindrome will take about O(n) but the amount of sets is dependent on the original string itself.
time cost O(n*2^n) -> collecting them while using the space to store them so the space and time cost should be linearly proportional; since the range can be varied a lot depending on the actual provided string so the performance might not be a problem. by LHearen
4ms in us. 72ms in cn.
*/ void traverse(char* s, int len, int begin, char** stack, int top, char**** arrs, int** colSizes, int* returnSize)
{
if(begin == len) //there is nothing left, collect the strings of a set;
{
*returnSize += ;
*colSizes = (int*)realloc(*colSizes, sizeof(int)*(*returnSize));
int size = top+;
(*colSizes)[*returnSize-] = size;
*arrs = (char***)realloc(*arrs, sizeof(char**)*(*returnSize));
(*arrs)[*returnSize-] = (char**)malloc(sizeof(char*)*size);
for(int i = ; i < size; i++)
(*arrs)[*returnSize-][i] = stack[i];
return ;
}
for(int i = begin; i < len; i++) //check each string that begin with s[begin];
{
int l=begin, r=i;
while(l<r && s[l]==s[r]) l++, r--;
if(l >= r) //it's a palindrome;
{
int size = i-begin+;
char *t = (char*)malloc(sizeof(char)*(size+));
*t = '\0';
strncat(t, s+begin, size);
stack[top+] = t;
traverse(s, len, i+, stack, top+, arrs, colSizes, returnSize); //collect the left;
}
}
} char*** partition(char* s, int** colSizes, int* returnSize)
{
if(!*s) return NULL;
int len = strlen(s);
*returnSize = ;
*colSizes = (char*)malloc(sizeof(char));
char*** arrs = (char***)malloc(sizeof(char**));
char** stack = (char**)malloc(sizeof(char*)*len);
int top = -;
traverse(s, strlen(s), , stack, top, &arrs, colSizes, returnSize);
return arrs;
}
public class Solution {
public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
boolean[][] dp = new boolean[s.length()][s.length()];
for(int i = 0; i < s.length(); i++) {
for(int j = 0; j <= i; j++) {
if(s.charAt(i) == s.charAt(j) && (i - j <= 2 || dp[j+1][i-1])) {
dp[j][i] = true;
}
}
}
helper(res, new ArrayList<>(), dp, s, 0);
return res;
}
private void helper(List<List<String>> res, List<String> path, boolean[][] dp, String s, int pos) {
if(pos == s.length()) {
res.add(new ArrayList<>(path));
return;
}
for(int i = pos; i < s.length(); i++) {
if(dp[pos][i]) {
path.add(s.substring(pos,i+1));
helper(res, path, dp, s, i+1);
path.remove(path.size()-1);
}
}
}
}
/*
The normal dfs backtracking will need to check each substring for palindrome, but a dp array can be used to record the possible break for palindrome before we start recursion.
Edit:
Sharing my thought process:
first, I ask myself that how to check if a string is palindrome or not, usually a two point solution scanning from front and back. Here if you want to get all the possible palindrome partition, first a nested for loop to get every possible partitions for a string, then a scanning for all the partitions. That's a O(n^2) for partition and O(n^2) for the scanning of string, totaling at O(n^4) just for the partition. However, if we use a 2d array to keep track of any string we have scanned so far, with an addition pair, we can determine whether it's palindrome or not by justing looking at that pair, which is this line if(s.charAt(i) == s.charAt(j) && (i - j <= 2 || dp[j+1][i-1])). This way, the 2d array dp contains the possible palindrome partition among all.
second, based on the prescanned palindrome partitions saved in dp array, a simple backtrack does the job. Java DP + DFS solution by yfcheng
*/
bool isPalin(char* s, int end);
void helper(char* s, char*** ret, int** colS, int* retS, char** cur, int k ); char*** partition(char* s, int** colS, int* retS)
{
*retS = ;
if(s == NULL || !strcmp(s, "")) return NULL; /* I know ... I hate static mem alloc as well */
*colS = (int*)malloc(sizeof(int)*);
char*** ret = (char***)malloc(sizeof(char**) * );
int len = strlen(s)+; char** cur = (char**)malloc(sizeof(char*) * );
for(int i = ; i<; i++)
cur[i] = (char*)malloc(len); /* backtracking starting from s[0] */
helper(s, ret, colS, retS, cur, ); return ret;
} void helper(char* s, char*** ret, int** colS, int* retS, char** cur, int k )
{
/* termination if already at the end of string s
we found a partition */
if(*s == )
{
ret[*retS] = (char**)malloc(sizeof(char*)*k);
for(int i = ; i<k; i++)
{
ret[*retS][i] = (char*)malloc(strlen(cur[i]) + );
strcpy(ret[*retS][i], cur[i]);
}
(*colS)[(*retS)++] = k;
return;
} /* explore next */
int len = strlen(s);
for(int i = ; i < len; i++)
{
if(isPalin(s, i))
{
/* put it into the cur list */
strncpy(cur[k], s, i+);
cur[k][i+] = '\0'; /* backtracking */
helper(s+i+, ret, colS, retS, cur, k+);
}
}
} bool isPalin(char* s, int end)
{
/* printf("error: start %d, end %d\n", start, end); */
if(end < ) return false;
int start = ;
while(end > start)
{
if(s[start] != s[end]) return false;
start++; end--;
}
return true;
} // by zcjsword Created at: September 11, 2015 5:12 AM
char*** result;
int head; int check(char* s,int left,int right){
while(s[left]==s[right]){
left++,right--;
}
return left>=right;
} int getResult(char* s,int left,int right,int path[],int index,int* colSize){
//printf("%d %d\n",left,right);
if(left>right){
char** list=(char**)malloc(sizeof(char*));
int h=; for(int i=index-;i>;i--){
char* tmp=(char*)malloc(sizeof(char)*(path[i-]-path[i]+));
int count=;
for(int j=path[i];j<path[i-];j++){
tmp[count++]=s[j];
}
tmp[count]='\0';
list[h++]=tmp;
list=(char**)realloc(list,sizeof(char*)*(h+));
}
colSize[head]=h;
result[head++]=list;
result=(char***)realloc(result,sizeof(char**)*(head+)); }
for(int i=right;i>=left;i--){
if(check(s,i,right)){
path[index]=i;
getResult(s,left,i-,path,index+,colSize);
}
}
return ;
} char*** partition(char* s, int** columnSizes, int* returnSize) {
result=(char***)malloc(sizeof(char**));
head=;
int path[];
*columnSizes=(int*)malloc(sizeof(int)*);
path[]=strlen(s);
getResult(s,,path[]-,path,,*columnSizes);
*returnSize=head;
return result;
}
// 28ms example
#define MAXCOL 1000
void DFS(char *s,int startIndex,char **temp_result,char ***result,
int len,int** columnSizes, int* returnSize)
{
int i,j;
if(startIndex >= len)
{
for(i = ;i < (*columnSizes)[*returnSize];i ++)
{
for(j = ;temp_result[i][j] != '\0';j ++)
{
result[*returnSize][i][j] = temp_result[i][j];
}
result[*returnSize][i][j] = '\0';
}
*returnSize += ;
(*columnSizes)[*returnSize] = (*columnSizes)[*returnSize-];
}
for(i = startIndex;i < len;i ++)
{
int left = startIndex;
int right = i;
while(left <= right && s[left]==s[right])
{
left ++;
right --;
}
if(left >= right)
{
strncpy(temp_result[(*columnSizes)[*returnSize]],s+startIndex,i - startIndex + );
temp_result[(*columnSizes)[*returnSize]][i - startIndex + ] = '\0';
(*columnSizes)[*returnSize] += ;
//printf("OK\n");
DFS(s,i+,temp_result,result,len,columnSizes,returnSize);
(*columnSizes)[*returnSize] -= ;
}
}
} char*** partition(char* s, int** columnSizes, int* returnSize) {
int i,j,k;
int len = strlen(s);
char ***result = malloc(MAXCOL*sizeof(char**));
for(i = ;i < MAXCOL;i ++)
{
result[i] = malloc(len*sizeof(char*));
for(j = ;j < len;j ++)
{
result[i][j] = malloc(len*sizeof(char));
}
}
char **temp_result = malloc(len*sizeof(char*));
for(i = ;i < len;i ++)
{
temp_result[i] = malloc(len*sizeof(char));
}
*columnSizes = calloc(MAXCOL,sizeof(int));
*returnSize = ;
DFS(s,,temp_result,result,len,columnSizes,returnSize);
return result;
}
// 52ms example
78. Subsets(M) & 90. Subsets II(M) & 131. Palindrome Partitioning的更多相关文章
- leetcode 131. Palindrome Partitioning 、132. Palindrome Partitioning II
131. Palindrome Partitioning substr使用的是坐标值,不使用.begin()..end()这种迭代器 使用dfs,类似于subsets的题,每次判断要不要加入这个数 s ...
- Leetcode 22. Generate Parentheses Restore IP Addresses (*) 131. Palindrome Partitioning
backtracking and invariant during generating the parathese righjt > left (open bracket and cloas ...
- leetcode 78. Subsets 、90. Subsets II
第一题是输入数组的数值不相同,第二题是输入数组的数值有相同的值,第二题在第一题的基础上需要过滤掉那些相同的数值. level代表的是需要进行选择的数值的位置. 78. Subsets 错误解法: cl ...
- 131. Palindrome Partitioning(回文子串划分 深度优先)
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- [LeetCode] 131. Palindrome Partitioning 回文分割
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- Leetcode 131. Palindrome Partitioning
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- 131. Palindrome Partitioning
题目: Given a string s, partition s such that every substring of the partition is a palindrome. Return ...
- [leetcode]131. Palindrome Partitioning字符串分割成回文子串
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- 【LeetCode】131. Palindrome Partitioning
Palindrome Partitioning Given a string s, partition s such that every substring of the partition is ...
随机推荐
- C++ STL 学习笔记__(8)map和multimap容器
10.2.9 Map和multimap容器 map/multimap的简介 ² map是标准的关联式容器,一个map是一个键值对序列,即(key,value)对.它提供基于key的快速检索能力. ² ...
- 使用Redis做分布式
一 为什么使用 Redis 在项目中使用 Redis,主要考虑两个角度:性能和并发.如果只是为了分布式锁这些其他功能,还有其他中间件 Zookpeer 等代替,并非一定要使用 Redis. 性能: 如 ...
- 使用DOS工具修复数据库
当SQL Server 实例出现异常,无法远程链接时,数据库管理员需要登陆到SQL Server实例机器上,通过命令行工具,修复异常. 一,使用net命令行启动数据库 通过net start 命令启动 ...
- 【ORACLE】oracle11g dg搭建
--------------------------------每个节点和DG------------------------------------------------------------- ...
- CodeFirst从零搭建ASP.NETCore2.0
没时间介绍了,废话不说先上车 以下所有扯淡都是建立在.NETCore2.0环境已经搭建好 右键解决方案>新建项目> 选择Web>ASP.NETCoreWeb应用程序(.NET Cor ...
- Revit二次开发-根据视图阶段(Phase)创建房间
最近开发业务中,有一个自动创建房间的功能,很自然的想到了Document.NewRooms2方法.但是当前功能的特殊之处在于,Revit项目视图是分阶段(Phase)的,不同阶段的房间是互相独立的. ...
- arduino新入手体验:三个小实验
新入手体验:三个小实验 一:一个LED闪烁 控制要求:1个LED灯,每隔50ms闪烁一次 实物连接图: 控制代码: //2018.6/11 ;//定义数字接口10,对应 void setup() { ...
- PAT甲题题解-1095. Cars on Campus(30)-(map+树状数组,或者模拟)
题意:给出n个车辆进出校园的记录,以及k个时间点,让你回答每个时间点校园内的车辆数,最后输出在校园内停留的总时间最长的车牌号和停留时间,如果不止一个,车牌号按字典序输出. 几个注意点: 1.如果一个车 ...
- mysql数据出现Unknown column 'user_uid' in 'field list' sql错误
来源:https://blog.csdn.net/gnail_oug/article/details/53606608 在操作mysql数据库时提示com.mysql.jdbc.exceptions. ...
- 分析code
1 using System; //跟系统说明一下可能会用到这个dll里面的东西 using System.Collections.Generic; //引用集合类命名空间 using System. ...