78. Subsets(M) & 90. Subsets II(M) & 131. Palindrome Partitioning
Given a set of distinct integers, nums, return all possible subsets. Note: The solution set must not contain duplicate subsets. For example,
If nums = [,,], a solution is: [
[],
[],
[],
[,,],
[,],
[,],
[,],
[]
]
class Solution
{
public:
vector<vector<int>> subsets(vector<int>& nums)
{
const size_t n = nums.size();
vector<int> v;
vector<vector<int> > result;
for (int i = ; i < <<n; ++i)
{
for (int j = ; j < n; ++j)
{
if(i & << j) v.push_back(nums[j]);
}
result.push_back(v);
v.clear();
}
return result;
}
};
3ms
迭代,增量构造.没看懂
http://www.cnblogs.com/TenosDoIt/p/3451902.html
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
sort(S.begin(), S.end());
vector<vector<int> > result();
for (auto elem : S) {
result.reserve(result.size() * );
auto half = result.begin() + result.size();
copy(result.begin(), half, back_inserter(result));
for_each(half, result.end(), [&elem](decltype(result[]) &e){
e.push_back(elem);
});
}
return result;
}
};
3ms
位向量法
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
sort(S.begin(), S.end()); //
vector<vector<int> > result;
vector<bool> selected(S.size(), false);
subsets(S, selected, , result);
return result;
}
private:
static void subsets(const vector<int> &S, vector<bool> &selected, int step,
vector<vector<int> > &result) {
if (step == S.size()) {
vector<int> subset;
for (int i = ; i < S.size(); i++) {
if (selected[i]) subset.push_back(S[i]);
}
result.push_back(subset);
return;
}
//S[step]
selected[step] = false;
subsets(S, selected, step + , result);
//S[step]
selected[step] = true;
subsets(S, selected, step + , result);
}
};

6ms
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
sort(S.begin(), S.end()); //
vector<vector<int> > result;
vector<int> path;
subsets(S, path, , result);
return result;
}
private:
static void subsets(const vector<int> &S, vector<int> &path, int step,
vector<vector<int> > &result) {
if (step == S.size()) {
result.push_back(path);
return;
}
//S[step]
subsets(S, path, step + , result);
//S[step]
path.push_back(S[step]);
subsets(S, path, step + , result);
path.pop_back();
}
};

6ms
Iterative This problem can also be solved iteratively. Take [, , ] in the problem statement as an example. The process of generating all the subsets is like: Initially: [[]]
Adding the first number to all the existed subsets: [[], []];
Adding the second number to all the existed subsets: [[], [], [], [, ]];
Adding the third number to all the existed subsets: [[], [], [], [, ], [], [, ], [, ], [, , ]].
Have you got the idea :-) The code is as follows. class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
sort(nums.begin(), nums.end());
vector<vector<int>> subs(, vector<int>());
for (int i = ; i < nums.size(); i++) {
int n = subs.size();
for (int j = ; j < n; j++) {
subs.push_back(subs[j]);
subs.back().push_back(nums[i]);
}
}
return subs;
}
};

// Recursion.
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res;
vector<int> out;
sort(S.begin(), S.end());
getSubsets(S, , out, res);
return res;
}
void getSubsets(vector<int> &S, int pos, vector<int> &out, vector<vector<int> > &res) {
res.push_back(out);
for (int i = pos; i < S.size(); ++i) {
//if (i != pos && S[i] == S[i-1]) continue;//subsets II
out.push_back(S[i]);
getSubsets(S, i + , out, res);
out.pop_back();
//while (S[i] == S[i + 1]) ++i; //subsets II
}
}
};

#include <bits/stdc++.h>
using namespace std;
class Solution {
public:
vector<vector<int> > subsetsWithDup(vector<int> &S) {
sort(S.begin(), S.end()); // ????
vector<vector<int> > result;
vector<int> path;
dfs(S, S.begin(), path, result);
for (int i = ; i < result.size(); ++i) {
for (int j = ; j < result[i].size(); ++j) {
printf("%d ", result[i][j]);
}printf("\n");
}
return result;
}
private:
static void dfs(const vector<int> &S, vector<int>::iterator start,
vector<int> &path, vector<vector<int> > &result) {
result.push_back(path);
printf("@@@@@@@@@@Line:%d start:%d\n", __LINE__, *start);
for (auto i = start; i < S.end(); i++) {
printf("i:%d\n", *i);
if (i != start && *i == *(i-))
{
printf("Continue****LINE:%d start:%d i:%d\n", __LINE__, *start, *i);
continue;
}
path.push_back(*i);
dfs(S, i + , path, result); for(auto xx : path) printf("BEFORE:%d ", xx);
printf("\nLINE:%d start:%d i:%d\n", __LINE__, *start, *i);
path.pop_back(); for (auto xx : path) printf("AFTER:%d ", xx); printf("\n");
}
}
};
int main(int argc, char *argv[])
{
vector<int> v{,,};
Solution sn;
sn.subsetsWithDup(v);
//printf("%d %d\n",v[0],v.size());
return ;
}

This structure might apply to many other backtracking questions, but here I am just going to demonstrate Subsets, Permutations, and Combination Sum.
Subsets : https://leetcode.com/problems/subsets/
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, );
return list;
}
private void backtrack(List<List<Integer>> list , List<Integer> tempList, int [] nums, int start){
list.add(new ArrayList<>(tempList));
for(int i = start; i < nums.length; i++){
tempList.add(nums[i]);
backtrack(list, tempList, nums, i + );
tempList.remove(tempList.size() - );
}
}
Subsets II (contains duplicates) : https://leetcode.com/problems/subsets-ii/
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, );
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int start){
list.add(new ArrayList<>(tempList));
for(int i = start; i < nums.length; i++){
if(i > start && nums[i] == nums[i-]) continue; // skip duplicates
tempList.add(nums[i]);
backtrack(list, tempList, nums, i + );
tempList.remove(tempList.size() - );
}
}
Permutations : https://leetcode.com/problems/permutations/
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
// Arrays.sort(nums); // not necessary
backtrack(list, new ArrayList<>(), nums);
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums){
if(tempList.size() == nums.length){
list.add(new ArrayList<>(tempList));
} else{
for(int i = ; i < nums.length; i++){
if(tempList.contains(nums[i])) continue; // element already exists, skip
tempList.add(nums[i]);
backtrack(list, tempList, nums);
tempList.remove(tempList.size() - );
}
}
}
Permutations II (contains duplicates) : https://leetcode.com/problems/permutations-ii/
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, new boolean[nums.length]);
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, boolean [] used){
if(tempList.size() == nums.length){
list.add(new ArrayList<>(tempList));
} else{
for(int i = ; i < nums.length; i++){
if(used[i] || i > && nums[i] == nums[i-] && !used[i - ]) continue;
used[i] = true;
tempList.add(nums[i]);
backtrack(list, tempList, nums, used);
used[i] = false;
tempList.remove(tempList.size() - );
}
}
}
Combination Sum : https://leetcode.com/problems/combination-sum/
public List<List<Integer>> combinationSum(int[] nums, int target) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, target, );
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int remain, int start){
if(remain < ) return;
else if(remain == ) list.add(new ArrayList<>(tempList));
else{
for(int i = start; i < nums.length; i++){
tempList.add(nums[i]);
backtrack(list, tempList, nums, remain - nums[i], i); // not i + 1 because we can reuse same elements
tempList.remove(tempList.size() - );
}
}
}
Combination Sum II (can't reuse same element) : https://leetcode.com/problems/combination-sum-ii/
public List<List<Integer>> combinationSum2(int[] nums, int target) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(nums);
backtrack(list, new ArrayList<>(), nums, target, );
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int remain, int start){
if(remain < ) return;
else if(remain == ) list.add(new ArrayList<>(tempList));
else{
for(int i = start; i < nums.length; i++){
if(i > start && nums[i] == nums[i-]) continue; // skip duplicates
tempList.add(nums[i]);
backtrack(list, tempList, nums, remain - nums[i], i + );
tempList.remove(tempList.size() - );
}
}
}
Palindrome Partitioning : https://leetcode.com/problems/palindrome-partitioning/
public List<List<String>> partition(String s) {
List<List<String>> list = new ArrayList<>();
backtrack(list, new ArrayList<>(), s, );
return list;
}
public void backtrack(List<List<String>> list, List<String> tempList, String s, int start){
if(start == s.length())
list.add(new ArrayList<>(tempList));
else{
for(int i = start; i < s.length(); i++){
if(isPalindrome(s, start, i)){
tempList.add(s.substring(start, i + ));
backtrack(list, tempList, s, i + );
tempList.remove(tempList.size() - );
}
}
}
}
public boolean isPalindrome(String s, int low, int high){
while(low < high)
if(s.charAt(low++) != s.charAt(high--)) return false;
return true;
}
/*Without any crap! Hit the road! Since we have to collect all the possible sets that meet the requirements -> a palindrome; so traversing the whole possible paths will be definitely the case -> using DFS and backtracking seems to be on the table. try from the start index of the string till any index latter and then check its validity - a palindrome? from the start index till the ending?
if so, we need to store it in a stack for latter collection and then traverse further starting from the previous ending index exclusively and begin the checking again and on and on till the start index is beyond the string;
at that time we are to collect the palindromes along the paths.
Several stuff should be specified: checking whether a string is palindrome is quite simple in C using pointer;
using DP might not help a lot since the checking process is quite fast while DP will require extra work to record and space allocation and so on.
In the end, let's check its space and time consumption: space cost O(n*2^n) -> one set of palindrome will take about O(n) but the amount of sets is dependent on the original string itself.
time cost O(n*2^n) -> collecting them while using the space to store them so the space and time cost should be linearly proportional; since the range can be varied a lot depending on the actual provided string so the performance might not be a problem. by LHearen
4ms in us. 72ms in cn.
*/ void traverse(char* s, int len, int begin, char** stack, int top, char**** arrs, int** colSizes, int* returnSize)
{
if(begin == len) //there is nothing left, collect the strings of a set;
{
*returnSize += ;
*colSizes = (int*)realloc(*colSizes, sizeof(int)*(*returnSize));
int size = top+;
(*colSizes)[*returnSize-] = size;
*arrs = (char***)realloc(*arrs, sizeof(char**)*(*returnSize));
(*arrs)[*returnSize-] = (char**)malloc(sizeof(char*)*size);
for(int i = ; i < size; i++)
(*arrs)[*returnSize-][i] = stack[i];
return ;
}
for(int i = begin; i < len; i++) //check each string that begin with s[begin];
{
int l=begin, r=i;
while(l<r && s[l]==s[r]) l++, r--;
if(l >= r) //it's a palindrome;
{
int size = i-begin+;
char *t = (char*)malloc(sizeof(char)*(size+));
*t = '\0';
strncat(t, s+begin, size);
stack[top+] = t;
traverse(s, len, i+, stack, top+, arrs, colSizes, returnSize); //collect the left;
}
}
} char*** partition(char* s, int** colSizes, int* returnSize)
{
if(!*s) return NULL;
int len = strlen(s);
*returnSize = ;
*colSizes = (char*)malloc(sizeof(char));
char*** arrs = (char***)malloc(sizeof(char**));
char** stack = (char**)malloc(sizeof(char*)*len);
int top = -;
traverse(s, strlen(s), , stack, top, &arrs, colSizes, returnSize);
return arrs;
}
public class Solution {
public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
boolean[][] dp = new boolean[s.length()][s.length()];
for(int i = 0; i < s.length(); i++) {
for(int j = 0; j <= i; j++) {
if(s.charAt(i) == s.charAt(j) && (i - j <= 2 || dp[j+1][i-1])) {
dp[j][i] = true;
}
}
}
helper(res, new ArrayList<>(), dp, s, 0);
return res;
}
private void helper(List<List<String>> res, List<String> path, boolean[][] dp, String s, int pos) {
if(pos == s.length()) {
res.add(new ArrayList<>(path));
return;
}
for(int i = pos; i < s.length(); i++) {
if(dp[pos][i]) {
path.add(s.substring(pos,i+1));
helper(res, path, dp, s, i+1);
path.remove(path.size()-1);
}
}
}
}
/*
The normal dfs backtracking will need to check each substring for palindrome, but a dp array can be used to record the possible break for palindrome before we start recursion.
Edit:
Sharing my thought process:
first, I ask myself that how to check if a string is palindrome or not, usually a two point solution scanning from front and back. Here if you want to get all the possible palindrome partition, first a nested for loop to get every possible partitions for a string, then a scanning for all the partitions. That's a O(n^2) for partition and O(n^2) for the scanning of string, totaling at O(n^4) just for the partition. However, if we use a 2d array to keep track of any string we have scanned so far, with an addition pair, we can determine whether it's palindrome or not by justing looking at that pair, which is this line if(s.charAt(i) == s.charAt(j) && (i - j <= 2 || dp[j+1][i-1])). This way, the 2d array dp contains the possible palindrome partition among all.
second, based on the prescanned palindrome partitions saved in dp array, a simple backtrack does the job. Java DP + DFS solution by yfcheng
*/
bool isPalin(char* s, int end);
void helper(char* s, char*** ret, int** colS, int* retS, char** cur, int k ); char*** partition(char* s, int** colS, int* retS)
{
*retS = ;
if(s == NULL || !strcmp(s, "")) return NULL; /* I know ... I hate static mem alloc as well */
*colS = (int*)malloc(sizeof(int)*);
char*** ret = (char***)malloc(sizeof(char**) * );
int len = strlen(s)+; char** cur = (char**)malloc(sizeof(char*) * );
for(int i = ; i<; i++)
cur[i] = (char*)malloc(len); /* backtracking starting from s[0] */
helper(s, ret, colS, retS, cur, ); return ret;
} void helper(char* s, char*** ret, int** colS, int* retS, char** cur, int k )
{
/* termination if already at the end of string s
we found a partition */
if(*s == )
{
ret[*retS] = (char**)malloc(sizeof(char*)*k);
for(int i = ; i<k; i++)
{
ret[*retS][i] = (char*)malloc(strlen(cur[i]) + );
strcpy(ret[*retS][i], cur[i]);
}
(*colS)[(*retS)++] = k;
return;
} /* explore next */
int len = strlen(s);
for(int i = ; i < len; i++)
{
if(isPalin(s, i))
{
/* put it into the cur list */
strncpy(cur[k], s, i+);
cur[k][i+] = '\0'; /* backtracking */
helper(s+i+, ret, colS, retS, cur, k+);
}
}
} bool isPalin(char* s, int end)
{
/* printf("error: start %d, end %d\n", start, end); */
if(end < ) return false;
int start = ;
while(end > start)
{
if(s[start] != s[end]) return false;
start++; end--;
}
return true;
} // by zcjsword Created at: September 11, 2015 5:12 AM
char*** result;
int head; int check(char* s,int left,int right){
while(s[left]==s[right]){
left++,right--;
}
return left>=right;
} int getResult(char* s,int left,int right,int path[],int index,int* colSize){
//printf("%d %d\n",left,right);
if(left>right){
char** list=(char**)malloc(sizeof(char*));
int h=; for(int i=index-;i>;i--){
char* tmp=(char*)malloc(sizeof(char)*(path[i-]-path[i]+));
int count=;
for(int j=path[i];j<path[i-];j++){
tmp[count++]=s[j];
}
tmp[count]='\0';
list[h++]=tmp;
list=(char**)realloc(list,sizeof(char*)*(h+));
}
colSize[head]=h;
result[head++]=list;
result=(char***)realloc(result,sizeof(char**)*(head+)); }
for(int i=right;i>=left;i--){
if(check(s,i,right)){
path[index]=i;
getResult(s,left,i-,path,index+,colSize);
}
}
return ;
} char*** partition(char* s, int** columnSizes, int* returnSize) {
result=(char***)malloc(sizeof(char**));
head=;
int path[];
*columnSizes=(int*)malloc(sizeof(int)*);
path[]=strlen(s);
getResult(s,,path[]-,path,,*columnSizes);
*returnSize=head;
return result;
}
// 28ms example
#define MAXCOL 1000
void DFS(char *s,int startIndex,char **temp_result,char ***result,
int len,int** columnSizes, int* returnSize)
{
int i,j;
if(startIndex >= len)
{
for(i = ;i < (*columnSizes)[*returnSize];i ++)
{
for(j = ;temp_result[i][j] != '\0';j ++)
{
result[*returnSize][i][j] = temp_result[i][j];
}
result[*returnSize][i][j] = '\0';
}
*returnSize += ;
(*columnSizes)[*returnSize] = (*columnSizes)[*returnSize-];
}
for(i = startIndex;i < len;i ++)
{
int left = startIndex;
int right = i;
while(left <= right && s[left]==s[right])
{
left ++;
right --;
}
if(left >= right)
{
strncpy(temp_result[(*columnSizes)[*returnSize]],s+startIndex,i - startIndex + );
temp_result[(*columnSizes)[*returnSize]][i - startIndex + ] = '\0';
(*columnSizes)[*returnSize] += ;
//printf("OK\n");
DFS(s,i+,temp_result,result,len,columnSizes,returnSize);
(*columnSizes)[*returnSize] -= ;
}
}
} char*** partition(char* s, int** columnSizes, int* returnSize) {
int i,j,k;
int len = strlen(s);
char ***result = malloc(MAXCOL*sizeof(char**));
for(i = ;i < MAXCOL;i ++)
{
result[i] = malloc(len*sizeof(char*));
for(j = ;j < len;j ++)
{
result[i][j] = malloc(len*sizeof(char));
}
}
char **temp_result = malloc(len*sizeof(char*));
for(i = ;i < len;i ++)
{
temp_result[i] = malloc(len*sizeof(char));
}
*columnSizes = calloc(MAXCOL,sizeof(int));
*returnSize = ;
DFS(s,,temp_result,result,len,columnSizes,returnSize);
return result;
}
// 52ms example
78. Subsets(M) & 90. Subsets II(M) & 131. Palindrome Partitioning的更多相关文章
- leetcode 131. Palindrome Partitioning 、132. Palindrome Partitioning II
131. Palindrome Partitioning substr使用的是坐标值,不使用.begin()..end()这种迭代器 使用dfs,类似于subsets的题,每次判断要不要加入这个数 s ...
- Leetcode 22. Generate Parentheses Restore IP Addresses (*) 131. Palindrome Partitioning
backtracking and invariant during generating the parathese righjt > left (open bracket and cloas ...
- leetcode 78. Subsets 、90. Subsets II
第一题是输入数组的数值不相同,第二题是输入数组的数值有相同的值,第二题在第一题的基础上需要过滤掉那些相同的数值. level代表的是需要进行选择的数值的位置. 78. Subsets 错误解法: cl ...
- 131. Palindrome Partitioning(回文子串划分 深度优先)
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- [LeetCode] 131. Palindrome Partitioning 回文分割
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- Leetcode 131. Palindrome Partitioning
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- 131. Palindrome Partitioning
题目: Given a string s, partition s such that every substring of the partition is a palindrome. Return ...
- [leetcode]131. Palindrome Partitioning字符串分割成回文子串
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- 【LeetCode】131. Palindrome Partitioning
Palindrome Partitioning Given a string s, partition s such that every substring of the partition is ...
随机推荐
- WPF编程,通过DoubleAnimation控制图片的透明度,将重叠的图片依次显示。
原文:WPF编程,通过DoubleAnimation控制图片的透明度,将重叠的图片依次显示. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307 ...
- PostgreSQL索引页
磨砺技术珠矶,践行数据之道,追求卓越价值 [作者 高健@博客园 luckyjackgao@gmail.com] 本页目的,是起到索引其他所有本人所写文档的作用: 分类一:PostgreSQL基础 ...
- JavaScript闭包简单应用
闭包定义 在JavaScript中,当一个内部函数被其外部函数之外的变量引用时,就形成了一个闭包.简单说,闭包就是能够读取其他函数内部变量的函数. 闭包的作用: 1. 可以读取函数内部的变量 2. 让 ...
- [CF1039E]Summer Oenothera Exhibition[根号分治+lct]
题意 给一个长度为 \(n\) 的序列, \(q\) 次询问,次给一个 \(k_i\) ,问最少将序列划分成多少次,满足每一段的极差不超过\(w−k_i\). \(1 \leq n, q \leq 1 ...
- 全面掌握IO(输入/输出流)
File类: 程序中操作文件和目录都可以使用File类来完成即不管是文件还是目录都是使用File类来操作的,File能新建,删除,重命名文件和目录,但File不能访问文件内容本身,如果需要访问文件本身 ...
- EditText点击出现光标但不弹出软键盘
3.0以下版本可以用editText.setInputType(InputType.TYPE_NULL)来实现.或者设置editText.setKeyListener(null)来实现. 3.0以上版 ...
- ubuntu set/unset proxy
export http_proxy export https_proxy unset http_proxy unset https_proxy
- 初级字典树查找在 Emoji、关键字检索上的运用 Part-1
系列索引 Unicode 与 Emoji 字典树 TrieTree 与性能测试 生产实践 前言 通常用户自行修改资料是很常见的需求,我们规定昵称长度在2到10之间.假设用户试图使用表情符号
- Alpha版使用说明
1引言 1 .1编写目的 针对我们发布的alpha版本做出安装和使用说明,使参与内测的人员及用户了解软件的使用方法和相关内容. 1 .2参考资料 <javaWeb程序设计基础><di ...
- 关于github的使用心得
https://github.com/JavaLizheng/test git常用命令: git config :配置git git add:更新working directory中的文件至stagi ...