以下代码摘自《Tensor Flow:实战Google深度学习框架》

本套代码是在 http://www.cnblogs.com/shanlizi/p/9033330.html 基础上进行持久化,分为3部分,分别为infenrence,train,eval.

是将原代码模块化,并且持久化之后可以直接调用训练后的模型。

需要注意的一点是:本人电脑的路径,mnist_inference.py是在Mnist_New文件夹下的,所以代码中加载模块用的是:import Mnist_New.mnist_inference as mnist_inference

import tensorflow as tf

# 定义神经网络结构相关的参数
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 # 通过tf.get_variable函数来获取变量。在训练神经网络时会创建这些变量;在测试时会通
# 过保存的模型加载这些变量的取值。而且更加方便的是,因为可以在变量加载时将滑动平均变
# 量重命名,所以可以直接通过相同的名字在训练时使用变量自身,而在测试时使用变量的滑动
# 平均值。在这个函数中也会将变量的正则化损失加入到损失集合。
def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape,initializer=tf.truncated_normal_initializer(stddev=0.1))
# 当给出了正则化生成函数时,将当前变量的正则化损失加入名字为losses的集合。在这里
# 使用了add_to_collection函数将一个张量加入一个集合,而这个集合的名称为losses。
# 这是自定义的集合,不在TensorFlow自动管理的集合列表中。
if regularizer != None:
tf.add_to_collection('losses', regularizer(weights))
return weights # 定义神经网络的前向传播过程
def inference(input_tensor, regularizer):
# 声明第一层神经网络的变量并完成前向传播过程。
with tf.variable_scope('layer1'):
# 这里通过tf.get_variable或者tf.Variable没有本质区别,因为在训练或者测试
# 中没有在同一个程序中多次调用这个函数。如果在同一个程序中多次调用,在第一次
# 调用之后需要将reuse参数设置为True。
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE],initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights)+biases) # 类似的声明第二层神经网络的变量并完成前向传播过程。
with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE],initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases # 返回最后前向传播的结果
return layer2

  

import os

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.py中定义的常量和前向传播的函数。
import Mnist_New.mnist_inference as mnist_inference # 配置神经网络的参数。
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99 # 模型保存的路径和文件名
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "model.ckpt" def train(mnist):
# 定义输入输出placeholder。
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
# 直接使用mnist_inference.py中定义的前向传播过程
y = mnist_inference.inference(x, regularizer)
global_step = tf.Variable(0, trainable=False) # 定义损失函数、学习率、滑动平均操作以及训练过程
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variable_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY
)
train_step = tf.train.GradientDescentOptimizer(learning_rate)\
.minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variable_averages_op]):
train_op = tf.no_op(name='train') # 初始化TensorFlow持久化类
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run() # 在训练过程中不再测试模型在验证数据上的表现,验证和测试的过程将会有一个独
# 立的程序来完成。
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step],
feed_dict={x: xs, y_: ys})
# 每1000轮保存一次模型
if i % 1000 == 0:
# 输出当前的训练情况。这里只输出了模型在当前训练batch上的损失
# 函数大小。通过损失函数的大小可以大概了解训练的情况。在验证数
# 据集上正确率的信息会有一个单独的程序来生成
print("After %d training steps, loss on training "
"batch is %g." % (step, loss_value))
# 保存当前的模型。注意这里给出了global_step参数,这样可以让每个
# 被保存的模型的文件名末尾加上训练的轮数,比如“model.ckpt-1000”,
# 表示训练1000轮之后得到的模型。
saver.save(
sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME),
global_step=global_step
) def main(argv=None):
mnist = input_data.read_data_sets("../path/to/MNIST_data/", one_hot=True)
train(mnist) if __name__ == "__main__":
tf.app.run()

  

import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.py 和mnist_train.py中定义的常量和函数。
import Mnist_New.mnist_inference as mnist_inference
import Mnist_New.mnist_train as mnist_train # 每10秒加载一次最新的模型,并且在测试数据上测试最新模型的正确率
EVAL_INTERVAL_SECS = 10 def evaluate(mnist):
with tf.Graph().as_default() as g:
# 定义输入输出的格式。
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
validate_feed = {x: mnist.validation.images,y_: mnist.validation.labels} # 直接通过调用封装好的函数来计算前向传播的结果。因为测试时不关注ze正则化损失的值
# 所以这里用于计算正则化损失的函数被设置为None。
y = mnist_inference.inference(x, None) # 使用前向传播的结果计算正确率。如果需要对未知的样例进行分类,那么使用
# tf.argmax(y,1)就可以得到输入样例的预测类别了。
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 通过变量重命名的方式来加载模型,这样在前向传播的过程中就不需要调用求滑动平均
# 的函数来获取平均值了。这样就可以完全共用mnist_inference.py中定义的
# 前向传播过程。
variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore) # 每隔EVAL_INTERVAL_SECS秒调用一次计算正确率的过程以检验训练过程中正确率的
# 变化。
while True:
with tf.Session() as sess:
# tf.train.get_checkpoint_state函数会通过checkpoint文件自动
# 找到目录中最新模型的文件名。
ckpt = tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
# 加载模型。
saver.restore(sess, ckpt.model_checkpoint_path)
# 通过文件名得到模型保存时迭代的轮数。
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy,feed_dict=validate_feed)
print("After %s training step(s), validation "
"accuracy = %g" % (global_step, accuracy_score))
else:
print("No checkpoint file found")
return
time.sleep(EVAL_INTERVAL_SECS) def main(argv=None):
mnist = input_data.read_data_sets("../path/to/MNIST_data/", one_hot=True)
evaluate(mnist) if __name__ == "__main__":
tf.app.run()

  

TensorFlow最佳实践样例的更多相关文章

  1. 80、tensorflow最佳实践样例程序

    ''' Created on Apr 21, 2017 @author: P0079482 ''' #-*- coding:utf-8 -*- import tensorflow as tf #定义神 ...

  2. Cloud TPU Demos(TensorFlow 云 TPU 样例代码)

    Cloud TPU Demos 这是一个Python脚本的集合,适合在开源TensorFlow和 Cloud TPU 上运行. 如果您想对模型做出任何修改或改进,请提交一个 PR ! https:// ...

  3. 吴裕雄 python 神经网络——TensorFlow 完整神经网络样例程序

    import tensorflow as tf from numpy.random import RandomState batch_size = 8 w1= tf.Variable(tf.rando ...

  4. 学习笔记TF061:分布式TensorFlow,分布式原理、最佳实践

    分布式TensorFlow由高性能gRPC库底层技术支持.Martin Abadi.Ashish Agarwal.Paul Barham论文<TensorFlow:Large-Scale Mac ...

  5. Tensorflow之MNIST的最佳实践思路总结

    Tensorflow之MNIST的最佳实践思路总结   在上两篇文章中已经总结出了深层神经网络常用方法和Tensorflow的最佳实践所需要的知识点,如果对这些基础不熟悉,可以返回去看一下.在< ...

  6. Tensorflow的最佳实践

    Tensorflow的最佳实践 1.变量管理   Tensorflow提供了变量管理机制,可直接通过变量的名字获取变量,无需通过传参数传递数据.方式如下: #以下为两种创建变量的方法 v=tf.get ...

  7. EffectiveTensorflow:Tensorflow 教程和最佳实践

    Tensorflow和其他数字计算库(如numpy)之间最明显的区别在于Tensorflow中的操作是符号. 这是一个强大的概念,允许Tensorflow进行所有类型的事情(例如自动区分),这些命令式 ...

  8. [持续交付实践] pipeline使用:项目样例

    项目说明 本文将以一个微服务项目的具体pipeline样例进行脚本编写说明.一条完整的pipeline交付流水线通常会包括代码获取.单元测试.静态检查.打包部署.接口层测试.UI层测试.性能专项测试( ...

  9. TensorFlow入门之MNIST最佳实践

    在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlo ...

随机推荐

  1. 20155338《网络对抗》Exp8 Web基础

    20155338<网络对抗>Exp8 Web基础 实验内容 Web前端:HTML 使用netstat -aptn查看80端口是否被占用,如果被占用了就kill 原进程号,我的没有被占用. ...

  2. 在java代码中执行js脚本,实现计算出字符串“(1+2)*(1+3)”的结果

            今天在公司项目中,发现一个计算运费的妙招.由于运费规则各种各样,因此写一个公式存到数据库.下次需要计算运费时,直接取出这个公式,把公式的未知变量给替换掉,然后计算出结果就是ok了. 一 ...

  3. Centos7 定时任务启动python脚本发送邮件

    直接上python脚本: 2.我是把这个脚本放在home文件夹下面 3.在centos命令模式下: crontab -e   命令编辑启动脚本: 4.第一个命令意思是:每天9点到下午5点,每隔一个小时 ...

  4. Luogu P1120 小木棍 [数据加强版]

    看了题目心中只有一个字——搜索!!! 但是很显然,朴素的搜索(回溯)绝壁超时. 剪枝&优化(要搞很多,要不然过不了) 1:从小到大搜索它们的因数,这样找到就exit. 2:将数据从大到小排序, ...

  5. 11.7 (下午)开课二个月零三天 (PDO)

    PDO访问方式操作数据库   mysqli是专门访问MySQL数据库的,不能访问其它数据库.PDO可以访问多种的数据库,它把操作类合并在一起,做成一个数据访问抽象层,这个抽象层就是PDO,根据类操作对 ...

  6. sql——inner join,where,left join的区别

    1.select a.name,a.sex,a.subject,a.age from TableA a, TableB b where a.name = b.name 2.select a.name, ...

  7. java maven项目迁移时缺失jar包 或者 maven jar包缺失时的解决方案

    这样弄完,jar包就都下载好了,就不缺失了. 从GitHub上checkout一个项目下来,导入idea后发现加载依赖奇慢无比,所以临时把网络调成FQ的代理,结果会发现idea会停止之前的下载,那怎么 ...

  8. SSIS 组件属性整理

    整理SSIS 组件的属性解释及其用法 一,ExecValueVariable属性 有些Task组件执行完成之后,会产生输出结果,称作Execution Value,例如,Execute SQL Tas ...

  9. jqGrid 列内容超过一定长度省略表示

    jqgrid初始化方法中的,对应列添加formatter方法 colNames : [ "描述" ], colModel : [ { name : 'description', i ...

  10. 轻量级直播服务器SRS安装及编译

    最近由于公司开发的需要--互动会议,开始研究直播中的技术.由于自身没有接触过虚拟机导致在研究的过程中遇到了很大的问题,首先官方GitHub给出的文档并没有清晰的指出编译是需要通过何种方式进行编译?以下 ...