以下代码摘自《Tensor Flow:实战Google深度学习框架》

本套代码是在 http://www.cnblogs.com/shanlizi/p/9033330.html 基础上进行持久化,分为3部分,分别为infenrence,train,eval.

是将原代码模块化,并且持久化之后可以直接调用训练后的模型。

需要注意的一点是:本人电脑的路径,mnist_inference.py是在Mnist_New文件夹下的,所以代码中加载模块用的是:import Mnist_New.mnist_inference as mnist_inference

import tensorflow as tf

# 定义神经网络结构相关的参数
INPUT_NODE = 784
OUTPUT_NODE = 10
LAYER1_NODE = 500 # 通过tf.get_variable函数来获取变量。在训练神经网络时会创建这些变量;在测试时会通
# 过保存的模型加载这些变量的取值。而且更加方便的是,因为可以在变量加载时将滑动平均变
# 量重命名,所以可以直接通过相同的名字在训练时使用变量自身,而在测试时使用变量的滑动
# 平均值。在这个函数中也会将变量的正则化损失加入到损失集合。
def get_weight_variable(shape, regularizer):
weights = tf.get_variable("weights", shape,initializer=tf.truncated_normal_initializer(stddev=0.1))
# 当给出了正则化生成函数时,将当前变量的正则化损失加入名字为losses的集合。在这里
# 使用了add_to_collection函数将一个张量加入一个集合,而这个集合的名称为losses。
# 这是自定义的集合,不在TensorFlow自动管理的集合列表中。
if regularizer != None:
tf.add_to_collection('losses', regularizer(weights))
return weights # 定义神经网络的前向传播过程
def inference(input_tensor, regularizer):
# 声明第一层神经网络的变量并完成前向传播过程。
with tf.variable_scope('layer1'):
# 这里通过tf.get_variable或者tf.Variable没有本质区别,因为在训练或者测试
# 中没有在同一个程序中多次调用这个函数。如果在同一个程序中多次调用,在第一次
# 调用之后需要将reuse参数设置为True。
weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer)
biases = tf.get_variable("biases", [LAYER1_NODE],initializer=tf.constant_initializer(0.0))
layer1 = tf.nn.relu(tf.matmul(input_tensor, weights)+biases) # 类似的声明第二层神经网络的变量并完成前向传播过程。
with tf.variable_scope('layer2'):
weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer)
biases = tf.get_variable("biases", [OUTPUT_NODE],initializer=tf.constant_initializer(0.0))
layer2 = tf.matmul(layer1, weights) + biases # 返回最后前向传播的结果
return layer2

  

import os

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.py中定义的常量和前向传播的函数。
import Mnist_New.mnist_inference as mnist_inference # 配置神经网络的参数。
BATCH_SIZE = 100
LEARNING_RATE_BASE = 0.8
LEARNING_RATE_DECAY = 0.99
REGULARIZATION_RATE = 0.0001
TRAINING_STEPS = 30000
MOVING_AVERAGE_DECAY = 0.99 # 模型保存的路径和文件名
MODEL_SAVE_PATH = "./model/"
MODEL_NAME = "model.ckpt" def train(mnist):
# 定义输入输出placeholder。
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE)
# 直接使用mnist_inference.py中定义的前向传播过程
y = mnist_inference.inference(x, regularizer)
global_step = tf.Variable(0, trainable=False) # 定义损失函数、学习率、滑动平均操作以及训练过程
variable_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step)
variable_averages_op = variable_averages.apply(tf.trainable_variables())
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1))
cross_entropy_mean = tf.reduce_mean(cross_entropy)
loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses'))
learning_rate = tf.train.exponential_decay(
LEARNING_RATE_BASE,
global_step,
mnist.train.num_examples / BATCH_SIZE,
LEARNING_RATE_DECAY
)
train_step = tf.train.GradientDescentOptimizer(learning_rate)\
.minimize(loss, global_step=global_step)
with tf.control_dependencies([train_step, variable_averages_op]):
train_op = tf.no_op(name='train') # 初始化TensorFlow持久化类
saver = tf.train.Saver()
with tf.Session() as sess:
tf.global_variables_initializer().run() # 在训练过程中不再测试模型在验证数据上的表现,验证和测试的过程将会有一个独
# 立的程序来完成。
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
_, loss_value, step = sess.run([train_op, loss, global_step],
feed_dict={x: xs, y_: ys})
# 每1000轮保存一次模型
if i % 1000 == 0:
# 输出当前的训练情况。这里只输出了模型在当前训练batch上的损失
# 函数大小。通过损失函数的大小可以大概了解训练的情况。在验证数
# 据集上正确率的信息会有一个单独的程序来生成
print("After %d training steps, loss on training "
"batch is %g." % (step, loss_value))
# 保存当前的模型。注意这里给出了global_step参数,这样可以让每个
# 被保存的模型的文件名末尾加上训练的轮数,比如“model.ckpt-1000”,
# 表示训练1000轮之后得到的模型。
saver.save(
sess, os.path.join(MODEL_SAVE_PATH, MODEL_NAME),
global_step=global_step
) def main(argv=None):
mnist = input_data.read_data_sets("../path/to/MNIST_data/", one_hot=True)
train(mnist) if __name__ == "__main__":
tf.app.run()

  

import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data # 加载mnist_inference.py 和mnist_train.py中定义的常量和函数。
import Mnist_New.mnist_inference as mnist_inference
import Mnist_New.mnist_train as mnist_train # 每10秒加载一次最新的模型,并且在测试数据上测试最新模型的正确率
EVAL_INTERVAL_SECS = 10 def evaluate(mnist):
with tf.Graph().as_default() as g:
# 定义输入输出的格式。
x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input')
y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input')
validate_feed = {x: mnist.validation.images,y_: mnist.validation.labels} # 直接通过调用封装好的函数来计算前向传播的结果。因为测试时不关注ze正则化损失的值
# 所以这里用于计算正则化损失的函数被设置为None。
y = mnist_inference.inference(x, None) # 使用前向传播的结果计算正确率。如果需要对未知的样例进行分类,那么使用
# tf.argmax(y,1)就可以得到输入样例的预测类别了。
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # 通过变量重命名的方式来加载模型,这样在前向传播的过程中就不需要调用求滑动平均
# 的函数来获取平均值了。这样就可以完全共用mnist_inference.py中定义的
# 前向传播过程。
variable_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY)
variables_to_restore = variable_averages.variables_to_restore()
saver = tf.train.Saver(variables_to_restore) # 每隔EVAL_INTERVAL_SECS秒调用一次计算正确率的过程以检验训练过程中正确率的
# 变化。
while True:
with tf.Session() as sess:
# tf.train.get_checkpoint_state函数会通过checkpoint文件自动
# 找到目录中最新模型的文件名。
ckpt = tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH)
if ckpt and ckpt.model_checkpoint_path:
# 加载模型。
saver.restore(sess, ckpt.model_checkpoint_path)
# 通过文件名得到模型保存时迭代的轮数。
global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
accuracy_score = sess.run(accuracy,feed_dict=validate_feed)
print("After %s training step(s), validation "
"accuracy = %g" % (global_step, accuracy_score))
else:
print("No checkpoint file found")
return
time.sleep(EVAL_INTERVAL_SECS) def main(argv=None):
mnist = input_data.read_data_sets("../path/to/MNIST_data/", one_hot=True)
evaluate(mnist) if __name__ == "__main__":
tf.app.run()

  

TensorFlow最佳实践样例的更多相关文章

  1. 80、tensorflow最佳实践样例程序

    ''' Created on Apr 21, 2017 @author: P0079482 ''' #-*- coding:utf-8 -*- import tensorflow as tf #定义神 ...

  2. Cloud TPU Demos(TensorFlow 云 TPU 样例代码)

    Cloud TPU Demos 这是一个Python脚本的集合,适合在开源TensorFlow和 Cloud TPU 上运行. 如果您想对模型做出任何修改或改进,请提交一个 PR ! https:// ...

  3. 吴裕雄 python 神经网络——TensorFlow 完整神经网络样例程序

    import tensorflow as tf from numpy.random import RandomState batch_size = 8 w1= tf.Variable(tf.rando ...

  4. 学习笔记TF061:分布式TensorFlow,分布式原理、最佳实践

    分布式TensorFlow由高性能gRPC库底层技术支持.Martin Abadi.Ashish Agarwal.Paul Barham论文<TensorFlow:Large-Scale Mac ...

  5. Tensorflow之MNIST的最佳实践思路总结

    Tensorflow之MNIST的最佳实践思路总结   在上两篇文章中已经总结出了深层神经网络常用方法和Tensorflow的最佳实践所需要的知识点,如果对这些基础不熟悉,可以返回去看一下.在< ...

  6. Tensorflow的最佳实践

    Tensorflow的最佳实践 1.变量管理   Tensorflow提供了变量管理机制,可直接通过变量的名字获取变量,无需通过传参数传递数据.方式如下: #以下为两种创建变量的方法 v=tf.get ...

  7. EffectiveTensorflow:Tensorflow 教程和最佳实践

    Tensorflow和其他数字计算库(如numpy)之间最明显的区别在于Tensorflow中的操作是符号. 这是一个强大的概念,允许Tensorflow进行所有类型的事情(例如自动区分),这些命令式 ...

  8. [持续交付实践] pipeline使用:项目样例

    项目说明 本文将以一个微服务项目的具体pipeline样例进行脚本编写说明.一条完整的pipeline交付流水线通常会包括代码获取.单元测试.静态检查.打包部署.接口层测试.UI层测试.性能专项测试( ...

  9. TensorFlow入门之MNIST最佳实践

    在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlo ...

随机推荐

  1. Hadoop日记Day13---使用hadoop自定义类型处理手机上网日志

    测试数据的下载地址为:http://pan.baidu.com/s/1gdgSn6r 一.文件分析 首先可以用文本编辑器打开一个HTTP_20130313143750.dat的二进制文件,这个文件的内 ...

  2. 使用 vi/vim 时,粘贴进新创建文件或空文件的首行内容丢失的解决方法

    只需要进入插入模式后,回车空一行或几行,再粘贴,再把上面的几个空行back回去,就不会丢失首行的内容了.

  3. 牛客网NOIP赛前集训营-提高组(第八场)-B-推箱子[最短路优化建图]

    题意 有 \(n\) 个箱子,指定一个箱子开始向右推,如果碰到了别的箱子会令其移动,问 \(k\) 秒之后每个箱子所在的位置. \(n\leq 10^5\). 分析 转化成最短路模型,如果两个箱子 \ ...

  4. Hadoop框架

    1.Hadoop的整体框架 Hadoop由HDFS.MapReduce.HBase.Hive和ZooKeeper等成员组成,其中最基础最重要元素为底层用于存储集群中所有存储节点文件的文件系统HDFS( ...

  5. linux中使sqlplus能够上下翻页

    安装包链接:https://pan.baidu.com/s/1WsQTeEQClM88aEqIvNi2ag 提取码:s241  rlwrap-0.37-1.el6.x86_64.rpm 和 rlwra ...

  6. package.json 中 npm 依赖包版本前的符号的意义

    版本的格式 major.minor.patch:主版本号.次版本号.修补版本号 patch:修复bug,兼容老版本 minor:新增功能,兼容老版本 major:新增功能,不兼容老版本 version ...

  7. 访问kubernetes ingress-controller

    ingress-controller可以理解为一套反向代理系统,本身需要暴露端口到集群外部,以便客户端访问. 根据实际使用,给出两种暴露端口的方式,如下: 方案一 拓扑 说明 ingress-cont ...

  8. C语言 -- 字符串详解

    字符串是一种非常重要的数据类型,但是C语言不存在显式的字符串类型,C语言中的字符串都以字符串常量的形式出现或存储在字符数组中.同时,C 语言提供了一系列库函数来对操作字符串,这些库函数都包含在头文件 ...

  9. springmvc 事务回滚说明

    Spring中的@Transactional(rollbackFor = Exception.class)属性详解 序言 今天我在写代码的时候,看到了.一个注解@Transactional(rollb ...

  10. OFART: OpenFlow-Switch Adaptive Random Testing

    文章名称:OFART: OpenFlow-Switch Adaptive Random Testing 发表时间:2017 期刊来源:--- 摘要 问题: 如果转发设备的正确性没有验证,这将影响这个网 ...