数据来自 UCI 数据集 匹马印第安人糖尿病数据集

载入数据

# -*- coding: utf-8 -*-
import pandas as pd
import matplotlib
matplotlib.rcParams['font.sans-serif']=[u'simHei']
matplotlib.rcParams['axes.unicode_minus']=False
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV from sklearn.datasets import load_breast_cancer data_set = pd.read_csv('pima-indians-diabetes.csv')
data = data_set.values[:,:] y = data[:,8]
X = data[:,:8]
X_train,X_test,y_train,y_test = train_test_split(X,y)

建立决策树,网格搜索微调模型

# In[1] 网格搜索微调模型
pipeline = Pipeline([
('clf',DecisionTreeClassifier(criterion='entropy'))
])
parameters={
'clf__max_depth':(3,5,10,15,20,25,30,35,40),
'clf__min_samples_split':(2,3),
'clf__min_samples_leaf':(1,2,3)
}
#GridSearchCV 用于系统地遍历多种参数组合,通过交叉验证确定最佳效果参数。
grid_search = GridSearchCV(pipeline,parameters,n_jobs=-1,verbose=-1,scoring='f1')
grid_search.fit(X_train,y_train) # 获取搜索到的最优参数
best_parameters = grid_search.best_estimator_.get_params()
print("最好的F1值为:",grid_search.best_score_)
print('最好的参数为:')
for param_name in sorted(parameters.keys()):
print('t%s: %r' % (param_name,best_parameters[param_name])) # In[2] 输出预测结果并评价
predictions = grid_search.predict(X_test)
print(classification_report(y_test,predictions))
最好的F1值为: 0.5573515325670498
最好的参数为:
tclf__max_depth: 5
tclf__min_samples_leaf: 1
tclf__min_samples_split: 2

评价模型

# In[2] 输出预测结果并评价
predictions = grid_search.predict(X_test)
print(classification_report(y_test,predictions))
              precision    recall  f1-score   support

         0.0       0.74      0.89      0.81       124
1.0 0.67 0.43 0.52 68

画出决策树

# In[3]打印树
from sklearn import tree
feature_name=data_set.columns.values.tolist()[:-1] # 列名称
DT = tree.DecisionTreeClassifier(criterion='entropy',max_depth=5,min_samples_split=2,min_samples_leaf=5)
DT.fit(X_train,y_train) '''
# 法一
import pydotplus
from sklearn.externals.six import StringIO
dot_data = StringIO()
tree.export_graphviz(DT,out_file = dot_data,feature_names=feature_name,
class_names=["有糖尿病","无病"],filled=True,rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("Tree.pdf")
print('Visible tree plot saved as pdf.')
''' # 法二
import graphviz
#ID3为决策树分类器fit之后得到的模型,注意这里必须在fit后执行,在predict之后运行会报错
dot_data = tree.export_graphviz(DT, out_file=None,feature_names=feature_name,class_names=["有糖尿病","无病"]) # doctest: +SKIP
graph = graphviz.Source(dot_data) # doctest: +SKIP
#在同级目录下生成tree.pdf文件
graph.render("tree2") # doctest: +SKIP

随机森林

# -*- coding: utf-8 -*-
import pandas as pd
import matplotlib
matplotlib.rcParams['font.sans-serif']=[u'simHei']
matplotlib.rcParams['axes.unicode_minus']=False
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import load_breast_cancer data_set = pd.read_csv('pima-indians-diabetes.csv')
data = data_set.values[:,:] y = data[:,8]
X = data[:,:8]
X_train,X_test,y_train,y_test = train_test_split(X,y) RF = RandomForestClassifier(n_estimators=10,random_state=11)
RF.fit(X_train,y_train)
predictions = RF.predict(X_test)
print(classification_report(y_test,predictions))
              precision    recall  f1-score   support

         0.0       0.82      0.91      0.86       126
1.0 0.78 0.61 0.68 66 micro avg 0.81 0.81 0.81 192
macro avg 0.80 0.76 0.77 192
weighted avg 0.80 0.81 0.80 192

scikit-learn机器学习(四)使用决策树做分类,并画出决策树,随机森林对比的更多相关文章

  1. iris数据集 决策树实现分类并画出决策树

    # coding=utf-8 import pandas as pd from sklearn.model_selection import train_test_split from sklearn ...

  2. 机器学习-树模型理论(GDBT,xgboost,lightBoost,随机森林)

    tree based ensemble algorithms 主要介绍以下几种ensemble的分类器(tree based algorithms) xgboost lightGBM: 基于决策树算法 ...

  3. 机器学习相关知识整理系列之二:Bagging及随机森林

    1. Bagging的策略 从样本集中重采样(有放回)选出\(n\)个样本,定义子样本集为\(D\): 基于子样本集\(D\),所有属性上建立分类器,(ID3,C4.5,CART,SVM等): 重复以 ...

  4. kaggle 欺诈信用卡预测——不平衡训练样本的处理方法 综合结论就是:随机森林+过采样(直接复制或者smote后,黑白比例1:3 or 1:1)效果比较好!记得在smote前一定要先做标准化!!!其实随机森林对特征是否标准化无感,但是svm和LR就非常非常关键了

    先看数据: 特征如下: Time Number of seconds elapsed between each transaction (over two days) numeric V1 No de ...

  5. scikit-learn机器学习(四)使用决策树做分类

    我们使用决策树来创建一个能屏蔽网页横幅广告的软件. 已知图片的数据判断它属于广告还是文章内容. 数据来自 http://archive.ics.uci.edu/ml/datasets/Internet ...

  6. ROC曲线是通过样本点分类概率画出的 例如某一个sample预测为1概率为0.6 预测为0概率0.4这样画出来,此外如果曲线不是特别平滑的话,那么很可能存在过拟合的情况

    ROC和AUC介绍以及如何计算AUC from:http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operat ...

  7. 机器学习中的算法(1)-决策树模型组合之随机森林与GBDT

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  8. 机器学习中的算法——决策树模型组合之随机森林与GBDT

    前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over- ...

  9. 机器学习中的算法-决策树模型组合之随机森林与GBDT

    机器学习中的算法(1)-决策树模型组合之随机森林与GBDT 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使 ...

随机推荐

  1. Js调用本地exe的方式

    1.     使用记事本(或其他文本编辑器)创建一个myprotocal.reg文件,并写入以下内容 Windows Registry Editor Version 5.00 [HKEY_CLASSE ...

  2. Anton and Chess(模拟+思维)

    http://codeforces.com/group/1EzrFFyOc0/contest/734/problem/D 题意:就是给你一个很大的棋盘,给你一个白棋的位置还有n个黑棋的位置,问你黑棋能 ...

  3. 关于MVC设计模式下的Model

    内容1: 1.大多数情况下,会有两个关于Model的文件. 一个称他为Entity Model,他里面的字段一般是与数据库直接交互的,也就是说,Entity里面每一个字段赋予的属性都是对应着数据库来的 ...

  4. PHP---反射--继续剖析

    首先定义一个类 <?phpInterface trainning{ public function exec();}class mma implements trainning{ public ...

  5. Dinic 与 SAP(ISAP?) 模板

    发一个最大流模板 DinicDinicDinic //vis为int类型 //sz为总点数 namespace Dinic { inline bool bfs() { int head = 0, ta ...

  6. Oracle 物理结构(一) 文件-Inventory

    一.Inventory的定义与作用 oraInventory存放的是Oracle软件安装的目录信息,Oralce的安装升级都需要用到这个目录,来看看Oracle文档中对这个目录的一点说明:All Or ...

  7. Ubuntu14.04 dd命令克隆系统镜像安装到另一台机器上

    linux系统如果想做备份还原,使用ghost的时候经常出现问题,后来发现可以直接使用dd命令完成硬盘的克隆和还原.当拷贝完硬盘后,就可以拿这个硬盘放到其它设备上跑了.也就是完成了“烧写”了. 用U盘 ...

  8. springmvc返回json对象

    1.引入jackson的依赖 <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-core -- ...

  9. iOS开发系列--地图与定位总结

    现在很多社交.电商.团购应用都引入了地图和定位功能,似乎地图功能不再是地图应用和导航应用所特有的.的确,有了地图和定位功能确实让我们的生活更加丰富多彩,极大的改变了我们的生活方式.例如你到了一个陌生的 ...

  10. Linux设备驱动程序 之 内核定时器

    综述 如果需要在将来的某个时间点调度执行某个动作,同时在该时间点到达之前不会阻塞当前进程,则可以使用内核定时器: 内核定时器是一个数据结构,它告诉内核在用户定义的时间点使用用户定义的参数来执行一个用户 ...