说明:

本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节
本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正
 
-------------------------------------------
 
Dijkstra算法和Floyd算法用于求解连通图中任意两个顶点之间的最短路径
 
Dijksra算法从一个顶点v0出发,每次为一个顶点vi确定到达v0的最小路径
 
Dijkstra算法用distance[i]记录顶点vi到v0的最短路径,用path[i]记录在最短路径中vi顶点的前继顶点,另外再用found[i]来标志顶点vi的最短路径是否已经确定
 

distance[]初始化为v0在邻接矩阵中的对应行,distance[i]记录了 以目前已经探明最小路径的顶点(以下简称已定顶点)(包括v0)为前继顶点 的所有路径中最短的路径长

Dijkstra算法做出了这样一个判断:每次从尚未确定最小路径的顶点中(一下简称 未定顶点)挑选一个distance值最小的顶点vj,则该顶点对应的distance[j]必定是vj的真实的最小路径长度,下面证明这个判断:
 
对于任意一个未定顶点,其最小路径中必定至少包含一个已定顶点(至少会包含v0),则该路径中至少有一个未定顶点vm以一个已定顶点vn为前继顶点,而length(v0-vn-vm) >= diatance[m] >= distance[j],也就说任意一个未定顶点的最小路径长必定不小于distance[j],由此就可以确定distance[j]必定是vj真实的最小路径长
 
Dijkstra算法的复杂度是n^2,每次确定一个顶点的最短路径,而确定一个顶点的最短路径需要遍历并比较distance数组,并且确定之后需要遍历更新distance数组,所以是n*n的开销
 
--------------------------------
 
Floyd算法的执行逻辑甚为简单,包含了三个循环的嵌套;其思路是遍历图中的每一个点,针对这个点vm,遍历图中任意两个顶点的两两组合vi和vj,比较vi和vj当前的最短连接和通过vm的连接的大小,并且把新的当前最短连接重置为其中更小的那个值;这样一圈遍历下来,就可以保证得到图中任意两个顶点之间的最小距离
 
这看起来并不靠谱,因为在最初vi和vm、vj和vm之间的最小路径都尚未安全确定下来的时候,如何能够马上就拿来比较,这时的比较不应该是无效的吗?
 
但是事实上并不需要每一步都实现严格的有效的比较,因为全部遍历下来之后,肯定会发生一次有效的比较
 
下面给出证明:
假设vi、vj之间的最小路径一共包括x个其它顶点,显然这条路径也确定了其中任何两个顶点之间的最小路径,否则比如vm、vn之间有不属于当前路径的最小子路径,则用该子路径替代当前的子路径,就可以得到更小的vi、vj之间的最小路径
 
对于这条路径上的任意三个相邻(至少会有一组相邻三顶点)顶点vm1、vm2、vm3,当遍历到vm2时,显然此时vm1-vm2-vm3这条最小子路径就会被连接起来(因为这条路径必定是vm1到vm3的最小子路径);事实上,当遍历到这条最小路径上的任意一个顶点的时候(除了vi、vj),就会把相邻的两个顶点连接起来;当所有顶点都被遍历之后,这x个顶点也必定已经把其在最小路径上相邻的顶点全都连接完毕,包括分别在两端的vi和vj顶点;换句话说,vi和vj之间的最小子路径必定已经被找到
 
Floyd算法的复杂度为n^3
 
 
 

【转载】Dijkstra算法和Floyd算法的正确性证明的更多相关文章

  1. Dijkstra算法和Floyd算法的正确性证明

    说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正   ------------- ...

  2. 最短路径Dijkstra算法和Floyd算法整理、

    转载自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最短路径—Dijkstra算法和Floyd算法 Dijks ...

  3. 【转】最短路径——Dijkstra算法和Floyd算法

    [转]最短路径--Dijkstra算法和Floyd算法 标签(空格分隔): 算法 本文是转载,原文在:最短路径-Dijkstra算法和Floyd算法 注意:以下代码 只是描述思路,没有测试过!! Di ...

  4. 最短路径——Dijkstra算法和Floyd算法

    Dijkstra算法概述 Dijkstra算法是由荷兰计算机科学家狄克斯特拉(Dijkstra)于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图(无 ...

  5. 【转载】最短路径—Dijkstra算法和Floyd算法

    注意:以下代码 只是描述思路,没有测试过!! Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始 ...

  6. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  7. 最短路径—大话Dijkstra算法和Floyd算法

    Dijkstra算法 算法描述 1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , ...

  8. 最短路径—Dijkstra算法和Floyd算法【转】

    本文来自博客园的文章:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijk ...

  9. 图的最短路径——dijkstra算法和Floyd算法

    dijkstra算法 求某一顶点到其它各个顶点的最短路径:已知某一顶点v0,求它顶点到其它顶点的最短路径,该算法按照最短路径递增的顺序产生一点到其余各顶点的所有最短路径. 对于图G={V,{E}};将 ...

随机推荐

  1. 网络编程[第二篇]基于udp协议的套接字编程

    udp协议下的套接字编程 一.udp是无链接的    不可靠的 而上篇的tcp协议是可靠的,会有反馈信息来确认信息交换的完成与否 基于udp协议写成的服务端与客户端,各司其职,不管对方是否接收到信息, ...

  2. shell习题第16题:查用户

    [题目要求] 写个shell,看看你的Linux系统中是否有自定义的用户(普通用户),如有有的话统计个数 [核心要点] CentOS6,uid>=500 CentOS7,uid>=1000 ...

  3. redis常用api

    一.全局命令 1.keys *            //查看所有键 2.dbsize           //键总数,如果存在大量键,线上禁止使用此命令 3.exists key     //存在返 ...

  4. SpringBoot 异步调用方法并接收返回值

    项目中肯定会遇到异步调用其他方法的场景,比如有个计算过程,需要计算很多个指标的值,但是每个指标计算的效率快慢不同,如果采用同步执行的方式,运行这一个过程的时间是计算所有指标的时间之和.比如: 方法A: ...

  5. Flutter 34: 图解自定义 View 之 Canvas (一)

    小菜最近在学习自定义 View,刚了解了一下 Paint 画笔的神奇之处,现在学习一下 Canvas 画布的神秘之处.Flutter 提供了众多的绘制方法,小菜接触不深,尽量都尝试一下. Canvas ...

  6. ASE19团队项目alpha阶段model组 scrum11 记录

    本次会议于11月15日,19时整在微软北京西二号楼sky garden召开,持续5分钟. 与会人员:Jiyan He, Kun Yan, Lei Chai, Linfeng Qi, Xueqing W ...

  7. Python学习记录6-list、tuple、dict、set复习

    数据类型在一门语言中是非常重要的,所以选择再次学习一下加深记忆.本次主要参考了大神廖雪峰的官方网站,非常感谢大神,讲的很清晰,收获很大. 标准数据类型 Number(数字) String(字符串) L ...

  8. Maven新建项目出现 Could not calculate build plan:plugin 错误解决办法

    删除本地.m2仓库中 org.apache.maven.plugins:maven-resources-plugin所在目录. 然后右击项目 Maven->Update Project-> ...

  9. IntelliJ IDEA安装及破解

    百度搜索IntelliJ IDEA,进入官网. 下载完成后进入安装界面 根据自己的情况选择安装路径 等待下载和安装完成. 安装完成 接下来我们运行IntelliJ IDEA 之后这里就要我们进行激活了 ...

  10. vim编辑命令

    vi命令 命令模式: yy:复制 光标所在的这一行 4yy:复制 光标所在行开始向下的4行 p: 粘贴 dd:剪切 光标所在的这一行 2dd:剪切 光标所在行 向下 2行 D:从当前的光标开始剪切,一 ...