洛谷传送门

板题…注意一下求多个数的乘积的逆元不要一个个快速幂求逆元,那样很慢,时间复杂度就是O(n2log)O(n^2log)O(n2log).直接先乘起来最后求一次逆元就行了.时间复杂度为O(nlog+n2)=O(n2)O(nlog+n^2)=O(n^2)O(nlog+n2)=O(n2)

这样的拉格朗日插值是预处理O(n2)O(n^2)O(n2),插入O(n)O(n)O(n),查询O(n)O(n)O(n)的.使用的前提是可以求逆元.

CODE

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
template<typename T>void read(T &num) {
char ch; int flg=1;
while((ch=getchar())<'0'||ch>'9')if(ch=='-')flg=-flg;
for(num=0;ch>='0'&&ch<='9';num=num*10+ch-'0',ch=getchar());
num*=flg;
}
const int MAXN = 2005;
const int mod = 998244353;
int n, k, x[MAXN], y[MAXN], w[MAXN];
inline int qmul(int a, int b) {
int res = 1;
while(b) {
if(b&1) res = 1ll * res * a % mod;
a = 1ll * a * a % mod, b >>= 1;
}
return res;
}
inline int l(int k) {
int res = 1;
for(int i = 0; i < n; ++i)
res = 1ll * res * (k-x[i]) % mod;
return res;
}
int main() {
read(n), read(k);
for(int i = 0; i < n; ++i)
read(x[i]), read(y[i]);
for(int i = 0; i < n; ++i) {
w[i] = 1;
for(int j = 0; j < n; ++j)
if(x[i]-x[j]) w[i] = 1ll * w[i] * (x[i]-x[j]) % mod; //这里先乘起来
w[i] = 1ll * qmul(w[i], mod-2) * y[i] % mod; //再求逆元
}
int Ans = 0;
for(int i = 0; i < n; ++i) {
if(k == x[i]) return printf("%d\n", y[i]), 0; //虽然数据保证不会出现k=x[i]的情况,但还是判一下
Ans = (Ans + 1ll * w[i] * qmul(k-x[i], mod-2) % mod) % mod;
}
Ans = 1ll * Ans * l(k) % mod;
printf("%d\n", (Ans + mod) % mod);
}

Luogu P4781【模板】拉格朗日插值的更多相关文章

  1. CF622F——自然数幂和模板&&拉格朗日插值

    题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...

  2. luogu P4781 【模板】拉格朗日插值

    嘟嘟嘟 本来以为拉格朗日插值是一个很复杂的东西,今天学了一下才知道就是一个公式-- 我们都知道\(n\)个点\((x_i, y_i)\)可以确定唯一一个最高次为\(n - 1\)的多项式,那么现在我们 ...

  3. P4781 【模板】拉格朗日插值

    P4781 [模板]拉格朗日插值 证明 :https://wenku.baidu.com/view/0f88088a172ded630b1cb6b4.html http://www.ebola.pro ...

  4. Luogu 4781 【模板】拉格朗日插值

    模板题. 拉格朗日插值的精髓在于这个公式 $$f(x) = \sum_{i = 1}^{n}y_i\prod _{j \neq i}\frac{x - x_i}{x_j - x_i}$$ 其中$(x_ ...

  5. 【Luogu4781】【模板】拉格朗日插值

    [Luogu4781][模板]拉格朗日插值 题面 洛谷 题解 套个公式就好 #include<cstdio> #define ll long long #define MOD 998244 ...

  6. LG4781 【模板】拉格朗日插值

    题意 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$取模 输入输出格 ...

  7. LG4781 【模板】拉格朗日插值 和 JLOI2016 成绩比较

    [模板]拉格朗日插值 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$ ...

  8. luogu P4948 数列求和 推式子 简单数学推导 二项式 拉格朗日插值

    LINK:数列求和 每次遇到这种题目都不太会写.但是做法很简单. 终有一天我会成功的. 考虑类似等比数列求和的东西 帽子戏法一下. 设\(f(k)=\sum_{i=1}^ni^ka^i\) 考虑\(a ...

  9. luogu P5667 拉格朗日插值2 拉格朗日插值 多项式多点求值 NTT

    LINK:P5667 拉格朗日插值2 给出了n个连续的取值的自变量的点值 求 f(m+1),f(m+2),...f(m+n). 如果我们直接把f这个函数给插值出来就变成了了多项式多点求值 这个难度好像 ...

随机推荐

  1. [Agc029E]Wandering TKHS_树形dp_树上差分

    Wandering TKHS 题目链接:https://atcoder.jp/contests/agc029/tasks/agc029_e 数据范围:略. 题解: 好神啊 Orz司队 https:// ...

  2. centos6.5安装python3及virtualenv环境

    1. 下载源码: wget https://www.python.org/ftp/python/3.6.0/Python-3.6.0.tgz wget http://mirrors.sohu.com/ ...

  3. JavaScript(js)笔记

    js注释 JavaScript注释与Java注释相同 // 单行注释 /* 多行注释 */ js五大基本类型:   number(数值型).string(字符串性).boolean(布尔型).unde ...

  4. Education Reform(CodeForces-119C)【DP】

    题意:从m门课选出n个排到n天,每天一门,难度须递增,每门课对应着一个作业量Xi,且Xi = Xi-1 + k or Xi - Xi-1 * k,总作业量要尽可能大,问能否排布,若能排布,求方案. 思 ...

  5. Windows安全日志

    在运行中输入:eventvwr.msc,即可打开事件日志. 登录类型 描述 2 互动(键盘和屏幕的登录系统) 3 网络(即连接到共享文件夹从其他地方在这台电脑上网络) 4 批处理(即计划任务) 5 服 ...

  6. javascript 构建模块化开发

    在使用 sea.js .require.js . angular 的时候. 我们使用到  define . module(require) 的方式,定义模块,和依赖模块 下面给出 define 和 m ...

  7. Codeforces 1247D. Power Products

    传送门 要满足存在 $x$ ,使得 $a_i \cdot a_j = x^k$ 那么充分必要条件就是 $a_i \cdot a_j$ 质因数分解后每个质因数的次幂都要为 $k$ 的倍数 证明显然 设 ...

  8. docker 入门3 - 服务 【翻译】

    入门,第 3 部分:服务 先决条件 安装 Docker 版本 1.13 或更高版本. 获取 Docker Compose.在适用于 Mac 和 Docker 桌面的 Windows 上,它已预安装,因 ...

  9. 怎样通过id属性值获取元素节点

    方法1: 使用document.getElementById(); 方法2: 使用document.querySelector(); document.getElementById("app ...

  10. Stanford NLP 课程笔记之计算字符串距离

    在自然语言处理任务中,有时候需要计算两个字符串之间的相似度,也可以称作是两者之间的距离,用最小编辑距离表示. 最小编辑距离用{Insertion,Deletion,Substitution}这三种操作 ...