先看斐波那契数列的定义

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)

翻译成java代码是:

  public int Fibonacci(int n) {
if (n == 1 || n == 2) {
return 1;
}
return Fibonacci(n - 1) + Fibonacci(n - 2);
}

代码很简单,简单的递归,就不解释了。

但是这个方法在实际执行的过程中有可能出现java.lang.StackOverflowError错误,这个错误是什么意思呢,jdk官方文档是这么解释的:应用程序递归太深而发生堆栈溢出时,抛出该错误。

JAVA程序运行时,会在内存中划分5片空间进行数据的存储。分别是:1:寄存器。2:本地方法区。3:方法区。4:栈。5:堆。我们上面说的“堆栈”就是指栈了,java栈中主要存储基本数据类型的值和对象的引用。那么在上面这个递归执行的过程中发生了什么呢?

我们先分析一下这个数列的公式:

F(n)=F(n-1)+F(n-2)

=(F(n-2)+F(n-3))+(F(n-3)+F(n-4))

=F(n-3)+F(n-4)+F(n-4)+F(n-5)+F(n-4)+F(n-5)+F(n-5)+F(n-6)

……

观察可以发现,这个方法在执行的过程中每多增加一层递归需要存储临时参数的栈空间就是上一层的两倍,而在最终递归结束前,每一层的方法参数n的值都不会被释放(出栈),所以栈的深度将会以O(2^n)的空间复杂度越压越深,最终达到最大深度导致栈溢出。

毫无疑问,对实现一个斐波那契数列来说,这个实现空间复杂度O(2^n)太大了,而实际上每一层方法传入的参数值n在成功传到下一层的时候就没用了,但是却一直不能出栈,导致了栈空间的浪费。

所以要优化这个算法,我们就只能让每层方法结束后及时出栈,也就是别用递归。不用递归用什么呢?很多时候,递归的功能可以通过循环来实现,循环内部的代码可以看作是一个方法的方法体,与递归不同的地方是循环代码没有返回值,但我们可以通过在循环内部更改外部变量的值来实现类似于返回值的效果。

有公式 F(n)=F(n-1)+F(n-2),且已知F(1)=1和F(2)=1,F(3)=1+1=2,F(4)=F(3)+F(2)=2+1=3,利用这个思路,我们可以得到如下的代码:

  public int Fibonacci(int n) {
int l = 1, j = 1, k = 1;
for (int i = 3; i <= n; i++) {
k = l + j;
l = j;
j = k;
}
return n == 0 ? 0 : k;
}

解释一下:l 和 j 一开始分别为F(1)和F(2)的值,循环从n>2时开始(小于等于2直接返回k的初始值),每循环一层,k的值变为前两项 l 和 j 的和,然后更新 l 和 j 的值供下次循环使用。

改良后的算法最大的特点就是栈深度只有一层,没有无用的变量值浪费空间,空间复杂度达到了最优。

从斐波那契数列看java方法的调用过程的更多相关文章

  1. (转)从斐波那契数列看Java方法的调用过程

    斐波那契数列的定义: 斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家列安纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔 ...

  2. Java实现斐波那契数列的多种方法

    小编综合了很多算法相关的书籍以及其他,总结了几种求斐波那契数列的方法 PS:其中的第83行的递归法是求斐波那契数列的经典方法 public class 斐波那契数列 { //迭代法 public st ...

  3. 几种复杂度的斐波那契数列的Java实现

    一:斐波那契数列问题的起源 13世纪初期,意大利数论家Leonardo Fibonacci在他的著作Liber Abaci中提出了兔子的繁殖问题: 如果一开始有一对刚出生的兔子,兔子的长大需要一个月, ...

  4. 斐波那契数列【java实现】

    java 实现斐波那契数列 以下是Java代码实现(递归与递推两种方式): import java.util.Scanner; /** * Fibonacci * * @author tongqian ...

  5. 斐波那契数列(Java)

    一.什么是斐波那契数列 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为& ...

  6. 剑指Offer-7.斐波那契数列(C++/Java)

    题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 分析: 斐波那契数列是0,1,1,2,3,5,8,13...也就是当前 ...

  7. 算法小节(一)——斐波那契数列(java实现)

    看到公司的笔试题中有一道题让写斐波那契数列,自己忙里偷闲写了一下 什么是斐波那契数列:斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

  8. 【斐波那契数列】java探究

    题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 解析 (1)递归方式 对于公式f(n) = f(n-1) + f(n ...

  9. 剑指offer第二版面试题10:斐波那契数列(JAVA版)

    题目:写一个函数,输入n,求斐波那契数列的第n项.斐波那契数列的定义如下: 1.效率很低效的解法,挑剔的面试官不会喜欢 使用递归实现: public class Fibonacci { public ...

随机推荐

  1. Django-djangorestframework-请求模块-获取请求参数

    目录 请求模块 源码分析 正式使用 总结 请求模块 主要是分析 drf 二次封装后的 request 对象 以及怎么拿到请求传递过来的数据(url 拼接的数据,数据包传过来的数据) 源码分析 源码查看 ...

  2. php实现只需要一个QQ号就可以获得用户信息

    <?php // 通过QQ号即可获取用户信息 // 获取QQ头像接口 // http://q1.qlogo.cn/g?b=qq&nk=QQ号&s=100&t=154790 ...

  3. 【leetcode】【二分 | 牛顿迭代法】69_Sqrt(x)

    题目链接:传送门 题目描述: 求Sqrt(x),返回整数值即可. [代码]: #include<bits/stdc++.h> using namespace std; ; /* int m ...

  4. Docker 容器学习笔记

    Docker 诞生于2013年,最初发起者是dotCloud公司.Docker自开源后受到广泛的关注和讨论,目前已有多个相关项目逐渐形成了围绕Docker容器的生态体系,由于Docker在业界造成的影 ...

  5. div可以同时设置背景图片和背景颜色吗?

    前言 当然可以同时设置 当图片背景色不透明时 情况一:当图片的长.宽 >= div的长.宽时 我们最终看到div背景是图片,之所以说是最终看到,是因为在页面加载时,我们先看到的div背景是颜色, ...

  6. javabean转成json字符首字母大写

    今天写接口的时候有个需求将接口返回的json字符串首字母大写:{"SN":"","Result":""}格式, 只需要在 ...

  7. UML中的类图

    模型 类 接口 关系 关联关系 描述了类的结构之间的关系.具有方向.名字.角色和多重性等信息.一般的关联关系语义较弱.也有两种语义较强,分别是聚合与组合 聚合 特殊关联关系,指明一个聚集(整体)和组成 ...

  8. 【pycharm】pycharm断点调试

    step into:单步执行,遇到子函数就进入并且继续单步执行(简而言之,进入子函数): step over:在单步执行时,在函数内遇到子函数时不会进入子函数内单步执行,而是将子函数整个执行完再停止, ...

  9. Kubernetes对象中的PersistentVolume、PersistentVolumeClaim和StorageClass的概念关系

    Kubernetes容器要持久化数据,离不开volume,k8s的volume和Docker原生概念中的volume有一些差别,不过本次不讲这个,本次要明确的是k8s持久化数据用到的几个对象Persi ...

  10. vue2.0+webpack+vuerouter+vuex+axios构建项目基础

    前言 本文讲解的是vue2.0+webpack+vuerouter+vuex+axios构建项目基础 步骤 1.全局安装webpack,命令 npm install webpack -g 注意,web ...