从斐波那契数列看java方法的调用过程
先看斐波那契数列的定义:
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)
翻译成java代码是:
public int Fibonacci(int n) {
if (n == 1 || n == 2) {
return 1;
}
return Fibonacci(n - 1) + Fibonacci(n - 2);
}
代码很简单,简单的递归,就不解释了。
但是这个方法在实际执行的过程中有可能出现java.lang.StackOverflowError错误,这个错误是什么意思呢,jdk官方文档是这么解释的:应用程序递归太深而发生堆栈溢出时,抛出该错误。
JAVA程序运行时,会在内存中划分5片空间进行数据的存储。分别是:1:寄存器。2:本地方法区。3:方法区。4:栈。5:堆。我们上面说的“堆栈”就是指栈了,java栈中主要存储基本数据类型的值和对象的引用。那么在上面这个递归执行的过程中发生了什么呢?
我们先分析一下这个数列的公式:
F(n)=F(n-1)+F(n-2)
=(F(n-2)+F(n-3))+(F(n-3)+F(n-4))
=F(n-3)+F(n-4)+F(n-4)+F(n-5)+F(n-4)+F(n-5)+F(n-5)+F(n-6)
……
观察可以发现,这个方法在执行的过程中每多增加一层递归需要存储临时参数的栈空间就是上一层的两倍,而在最终递归结束前,每一层的方法参数n的值都不会被释放(出栈),所以栈的深度将会以O(2^n)的空间复杂度越压越深,最终达到最大深度导致栈溢出。
毫无疑问,对实现一个斐波那契数列来说,这个实现空间复杂度O(2^n)太大了,而实际上每一层方法传入的参数值n在成功传到下一层的时候就没用了,但是却一直不能出栈,导致了栈空间的浪费。
所以要优化这个算法,我们就只能让每层方法结束后及时出栈,也就是别用递归。不用递归用什么呢?很多时候,递归的功能可以通过循环来实现,循环内部的代码可以看作是一个方法的方法体,与递归不同的地方是循环代码没有返回值,但我们可以通过在循环内部更改外部变量的值来实现类似于返回值的效果。
有公式 F(n)=F(n-1)+F(n-2),且已知F(1)=1和F(2)=1,F(3)=1+1=2,F(4)=F(3)+F(2)=2+1=3,利用这个思路,我们可以得到如下的代码:
public int Fibonacci(int n) {
int l = 1, j = 1, k = 1;
for (int i = 3; i <= n; i++) {
k = l + j;
l = j;
j = k;
}
return n == 0 ? 0 : k;
}
解释一下:l 和 j 一开始分别为F(1)和F(2)的值,循环从n>2时开始(小于等于2直接返回k的初始值),每循环一层,k的值变为前两项 l 和 j 的和,然后更新 l 和 j 的值供下次循环使用。
改良后的算法最大的特点就是栈深度只有一层,没有无用的变量值浪费空间,空间复杂度达到了最优。
从斐波那契数列看java方法的调用过程的更多相关文章
- (转)从斐波那契数列看Java方法的调用过程
斐波那契数列的定义: 斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家列安纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔 ...
- Java实现斐波那契数列的多种方法
小编综合了很多算法相关的书籍以及其他,总结了几种求斐波那契数列的方法 PS:其中的第83行的递归法是求斐波那契数列的经典方法 public class 斐波那契数列 { //迭代法 public st ...
- 几种复杂度的斐波那契数列的Java实现
一:斐波那契数列问题的起源 13世纪初期,意大利数论家Leonardo Fibonacci在他的著作Liber Abaci中提出了兔子的繁殖问题: 如果一开始有一对刚出生的兔子,兔子的长大需要一个月, ...
- 斐波那契数列【java实现】
java 实现斐波那契数列 以下是Java代码实现(递归与递推两种方式): import java.util.Scanner; /** * Fibonacci * * @author tongqian ...
- 斐波那契数列(Java)
一.什么是斐波那契数列 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为& ...
- 剑指Offer-7.斐波那契数列(C++/Java)
题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 分析: 斐波那契数列是0,1,1,2,3,5,8,13...也就是当前 ...
- 算法小节(一)——斐波那契数列(java实现)
看到公司的笔试题中有一道题让写斐波那契数列,自己忙里偷闲写了一下 什么是斐波那契数列:斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
- 【斐波那契数列】java探究
题目描述 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 解析 (1)递归方式 对于公式f(n) = f(n-1) + f(n ...
- 剑指offer第二版面试题10:斐波那契数列(JAVA版)
题目:写一个函数,输入n,求斐波那契数列的第n项.斐波那契数列的定义如下: 1.效率很低效的解法,挑剔的面试官不会喜欢 使用递归实现: public class Fibonacci { public ...
随机推荐
- 手动部署k8s-prometheus
简介 Prometheus 最初是 SoundCloud 构建的开源系统监控和报警工具,是一个独立的开源项目,于2016年加入了 CNCF 基金会,作为继 Kubernetes 之后的第二个托管项目. ...
- 2、wepy安装后提示Cannot read property 'addDeps' 参考自https://www.cnblogs.com/yuanchaoyong/p/11614400.html
摘抄自https://www.cnblogs.com/yuanchaoyong/p/11614400.html wepy安装步骤 $ npm install @wepy/cli -g # 全局安装 W ...
- VBA学习资料分享-4
工作中经常要从数据库把数据跑出来放到EXCEL上,才能进行下一步的操作,那么VBA如何结合SQL提取数据呢?答案就是ADO. 声明和实例变量 引用法——引用Microsoft ActiveX Data ...
- 使用LEANGOO泳道
转自:https://www.leangoo.com/leangoo_guide/leangoo_yongdao.html 列表使用纵向的纬度管理卡片,通常代表卡片的工作的不同阶段,或者任务的状态.泳 ...
- 使用2种python脚本工具将2个txt文档中的文字进行比较,并计算出Corr, WER正确率,准确率
一.准备: linux服务器,src2mlf.py rec2mlf.py HResults文件,1份源文件和1份需要对比的文件.文件放置于本人云盘 二.使用方法: 1. 对比工具 HResul ...
- django 文件上传样例以及遇到的一些问题
使用django上传文件 主流有两种方法 from表单以及ajax,为了自由度高一点,选择了ajax来实现文件的上传 前端部分代码如下: 主要关注 一 有一个文件上传(type='file')的按钮, ...
- List集合复制
方法一: public static void main(String[] args) { // TODO Auto-generated method stub List<String> ...
- 发现护考上机考试的一个bug:附软件截图(模拟软件)
目录: 一.文章主旨 二.问题发现的起因 三.bug(问题)描述 四.软件截图 五.我的思考 六.一点期盼 一.文章主旨: 2019年5月18.19.20日,又是一年一度的护资考试(上机考),考试前夕 ...
- VUE【三、指令】
模板指令 1.数据渲染(对应data数据) {{a}} 当使用v-once指令时,数据会一次绑定,后续修改值不会变化 v-text="a" 等同于{{a}} v-html=&quo ...
- django框架—终端命令
创建一个虚拟环境:在虚拟环境中创建项目目录 cd到项目根目录 创建项目:django-admin startproject "项目名称" 创建app:python manage.p ...