题意

求一棵树上,两两距离相等的三个点的三元组(无序)的个数。

题解



转自 CaptainHarryChen 的博客

CODE

代码中的f,gf,gf,g对应题解中的num,waynum,waynum,way

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
inline void rd(int &x) {
char ch; int flg=1; while(!isdigit(ch=getchar()))if(ch=='-')flg=-flg;
x = 0; do x=x*10+ch-'0'; while(isdigit(ch=getchar())); x*=flg;
}
const int MAXN = 300005;
int n, m, fir[MAXN], to[MAXN<<1], nxt[MAXN<<1], cnt;
inline void link(int u, int v) {
to[++cnt] = v, nxt[cnt] = fir[u], fir[u] = cnt;
to[++cnt] = u, nxt[cnt] = fir[v], fir[v] = cnt;
}
int mxd[MAXN], son[MAXN];
void dfs1(int u, int ff) {
for(int i = fir[u], v; i; i = nxt[i])
if((v=to[i]) != ff) {
dfs1(v, u);
if(mxd[v] > mxd[son[u]]) son[u] = v;
}
mxd[u] = mxd[son[u]] + 1;
} LL tmp[MAXN<<2], *f[MAXN], *g[MAXN], *id=tmp; LL ans;
void dfs(int u, int ff) {
if(son[u]) f[son[u]] = f[u] + 1, g[son[u]] = g[u] - 1, dfs(son[u], u);
f[u][0] = 1; ans += g[u][0];
for(int i = fir[u], v; i; i = nxt[i])
if((v=to[i]) != ff && v != son[u]) {
f[v] = id; id += mxd[v]<<1;
g[v] = id; id += mxd[v]<<1;
dfs(v, u);
for(int j = 0; j < mxd[v]; ++j) {
if(j) ans += f[u][j-1] * g[v][j];
ans += g[u][j+1] * f[v][j];
}
for(int j = 0; j < mxd[v]; ++j) {
g[u][j+1] += f[u][j+1] * f[v][j];
if(j) g[u][j-1] += g[v][j];
f[u][j+1] += f[v][j];
}
}
}
int main () {
rd(n);
for(int i = 1, x, y; i < n; ++i)
rd(x), rd(y), link(x, y);
dfs1(1, 0);
f[1] = id; id += mxd[1]<<1;
g[1] = id; id += mxd[1]<<1;
dfs(1, 0);
printf("%lld\n", ans);
}

BZOJ4543 Hotel加强版(长链剖分)的更多相关文章

  1. bzoj4543 [POI2014]Hotel加强版 长链剖分+树形DP

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4543 题解 这道题的弱化版 bzoj3522 [POI2014]Hotel 的做法有好几种吧. ...

  2. BZOJ4543[POI2014]Hotel加强版——长链剖分+树形DP

    题意参见BZOJ3522 n<=100000 数据范围增强了,显然之前的转移方程不行了,那么不妨换一种. 因为不能枚举根来换根DP,那么我们描述的DP方程每个点要计算三个点都在这个点的子树内的方 ...

  3. BZOJ.4543.[POI2014]Hotel加强版(长链剖分 树形DP)

    题目链接 弱化版:https://www.cnblogs.com/SovietPower/p/8663817.html. 令\(f[x][i]\)表示\(x\)的子树中深度为\(i\)的点的个数,\( ...

  4. BZOJ3522&4543 [POI2014]Hotel加强版 长链剖分

    上上周见fc爷用长链剖分秒题 于是偷偷学一学 3522的数据范围很小 可以暴力枚举每个点作为根节点来dp 复杂度$O(n^2)$ 考虑令$f[x][j]$表示以$x$为根的子树内距离$x$为$j$的点 ...

  5. 【BZOJ4543】[POI2014]Hotel加强版 长链剖分+DP

    [BZOJ4543][POI2014]Hotel加强版 Description 同OJ3522数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 ...

  6. bzoj 3522 / 4543 [POI 2014] Hotel - 动态规划 - 长链剖分

    题目传送门 bzoj 3522 需要root权限的传送点 bzoj 4543 快速的传送点 慢速的传送点 题目大意 给定一棵树,问有多少个无序三元组$(x, y, z)$使得这三个不同点在树上两两距离 ...

  7. 【BZOJ4543】Hotel加强版(长链剖分)

    [BZOJ4543]Hotel加强版(长链剖分) 题面 BZOJ,没有题面 洛谷,只是普通版本 题解 原来我们的\(O(n^2)\)做法是设\(f[i][j]\)表示以\(i\)为根的子树中,距离\( ...

  8. 2019.01.08 bzoj4543: [POI2014]Hotel加强版(长链剖分+dp)

    传送门 代码: 长链剖分好题. 题意:给你一棵树,问树上选三个互不相同的节点,使得这个三个点两两之间距离相等的方案数. 思路: 先考虑dpdpdp. fi,jf_{i,j}fi,j​表示iii子树中离 ...

  9. BZOJ4543/BZOJ3522 [POI2014]Hotel加强版(长链剖分)

    题目好神仙--这个叫长链剖分的玩意儿更神仙-- 考虑dp,设\(f[i][j]\)表示以\(i\)为根的子树中到\(i\)的距离为\(j\)的点的个数,\(g[i][j]\)表示\(i\)的子树中有\ ...

  10. 蒟蒻的长链剖分学习笔记(例题:HOTEL加强版、重建计划)

    长链剖分学习笔记 说到树的链剖,大多数人都会首先想到重链剖分.的确,目前重链剖分在OI中有更加多样化的应用,但它大多时候是替代不了长链剖分的. 重链剖分是把size最大的儿子当成重儿子,顾名思义长链剖 ...

随机推荐

  1. Spring中声明式事务的注解@Transactional的参数的总结(REQUIRED和REQUIRES_NEW的与主方法的回滚问题)

    一.事务的传播行为1.介绍 当事务方法被另一个事务方法调用时,必须指定事务应该如何传播.例如:方法可能继续在现有事务中运行,也可能开启一个新事务,并在自己的事务中运行.2.属性 事务的传播行为可以由传 ...

  2. LeetCode 665. 非递减数列(Non-decreasing Array)

    665. 非递减数列 665. Non-decreasing Array 题目描述 给定一个长度为 n 的整数数组,你的任务是判断在最多改变 1 个元素的情况下,该数组能否变成一个非递减数列. 我们是 ...

  3. LeetCode 746. 使用最小花费爬楼梯(Min Cost Climbing Stairs) 11

    746. 使用最小花费爬楼梯 746. Min Cost Climbing Stairs 题目描述 数组的每个索引做为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i].(索引从 0 ...

  4. QPS、TPS和系统吞吐量

    QPS:Queries Per Second,每秒查询率.是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准. TPS:Transactions Per ...

  5. [转帖]oracle补丁类型

    oracle补丁类型 https://www.cnblogs.com/liang545621/p/9417919.html 介绍挺好的 跟现在的也比较类似呢.   名称 说明 Release ¤ 标准 ...

  6. Redis的安装(windows)

    一.安装redis windows版本的下载在https://github.com/MicrosoftArchive/redis/tags msi是安装版,zip的解压就能用.建议下msi的. 下载挺 ...

  7. C++_向函数传递对象

    向函数传递对象 1. 使用对象作为函数参数 对象可以作为参数传递给函数,其方法与传递其他类型的数据相同. 在向函数传递对象时,是通过传值调用传递给函数的. 因此,函数中对对象的任何修改均不影响调用该函 ...

  8. Java 8 新特性--Lambda表达式作为方法参数

    Lambda表达式的使用场景: 当方法的参数是一个函数式接口时,可以使用Lambda表达式进行简化—— 首先,前提是Runnable接口是一个函数式接口,经过查看源码得知,确实如此: 将Runnabl ...

  9. [Luogu5324][BJOI2019]删数(线段树)

    CF风格题,先猜结论,记数列中i这个数共出现了cnt[i]次,那么所有区间[i-cnt[i]+1,i]的并集的补集大小就是答案. 于是我们只需要线段树维护每个位置是否被某个区间覆盖到即可,对于整体加减 ...

  10. linux测试umask

    客户需求,由于ftp服务器权限管理需要,测试能否通过修改oracle umask值,达到expdp导出文件权限,导出即是想要的权限. Session [oracle@adg1 ~]$ umask [o ...