Painter
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5621   Accepted: 3228

Description

The local toy store sells small fingerpainting kits with between three and twelve 50ml bottles of paint, each a different color. The paints are bright and fun to work with, and have the useful property that if you mix X ml each of any three different colors, you get X ml of gray. (The paints are thick and "airy", almost like cake frosting, and when you mix them together the volume doesn't increase, the paint just gets more dense.) None of the individual colors are gray; the only way to get gray is by mixing exactly three distinct colors, but it doesn't matter which three. Your friend Emily is an elementary school teacher and every Friday she does a fingerpainting project with her class. Given the number of different colors needed, the amount of each color, and the amount of gray, your job is to calculate the number of kits needed for her class.

Input

The input consists of one or more test cases, followed by a line containing only zero that signals the end of the input. Each test case consists of a single line of five or more integers, which are separated by a space. The first integer N is the number of different colors (3 <= N <= 12). Following that are N different nonnegative integers, each at most 1,000, that specify the amount of each color needed. Last is a nonnegative integer G <= 1,000 that specifies the amount of gray needed. All quantities are in ml.

Output

For each test case, output the smallest number of fingerpainting kits sufficient to provide the required amounts of all the colors and gray. Note that all grays are considered equal, so in order to find the minimum number of kits for a test case you may need to make grays using different combinations of three distinct colors.

Sample Input

3 40 95 21 0
7 25 60 400 250 0 60 0 500
4 90 95 75 95 10
4 90 95 75 95 11
5 0 0 0 0 0 333
0

Sample Output

2
8
2
3
4

Source

  思路:

给出几种颜色需求的ml量,然后最后一个数是灰色需求量,灰色可以由任何三中不同颜色的颜色组成,每个颜料盒有所给出的颜色的炎凉50ml

问最少给出几个颜料盒,可以组成所需求颜色

显然贪心可以解决,先求出满足的普通色所需的最小盒数,然后把剩余颜料从大到小排列,那前三种每个取出1ml组成1

ml的灰色,在这里本来我是把选出三个颜色中,直接选取第三个(最小容量)的所有容量k,组成kml的灰色,后来发现不行,贪心必须每次都要要求最好

所以每次1ml来选才能达到要求

代码:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#define N 10000
using namespace std;
int n,col[N],mx=-1,gray,cnt;
bool cmp(int a,int b){return a>b;}
int main()
{
while(scanf("%d",&n) == 1 && n != 0)
{
mx=-1,cnt=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&col[i]);
mx=max(mx,col[i]);
}
scanf("%d",&gray);
cnt+=(mx/50);
if(mx%50!=0)cnt++;
for(int i=1;i<=n;i++)col[i]=cnt*50-col[i];
while(gray>0)
{ sort(col+1,col+n+1,cmp);
if(col[3]>0)
{
gray--;
col[1]--;
col[2]--;
col[3]--;
}
else
{
cnt++;
for(int i=1;i<=n;i++)col[i]+=50;
}
}
printf("%d\n",cnt);
}
}

【poj2709】Painter--贪心的更多相关文章

  1. POJ2709 染料贪心

    题意:       要搭配出来n种颜料,每种颜料要用mi升,除了这n种颜色还有一个合成灰色的毫升数,灰色是由三种不同的颜色合成的,三种m m m 的不同颜色能合成m升灰色,然后问你满足要求至少要多少盒 ...

  2. poj2709 贪心基础

    D - 贪心 基础 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     64bi ...

  3. poj 1681 Painter's Problem

    Painter's Problem 题意:给一个n*n(1 <= n <= 15)具有初始颜色(颜色只有yellow&white两种,即01矩阵)的square染色,每次对一个方格 ...

  4. POJ 2706 Painter

    Painter Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3157   Accepted: 1962 Descripti ...

  5. poj_2709 贪心算法

    poj 2709 painter 题目要求 给定涂料,每套涂料含有3-12种不同的颜色(开始时候给定选用的颜料套的颜色数目),且一套涂料中每种颜色均有50ml.且一套涂料中的任意三种不同的颜色各X m ...

  6. [SinGuLaRiTy] 贪心题目复习

    [SinGuLaRiTy-1024] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. [POJ 2709] 颜料 (Painter) 题目描述 ...

  7. BZOJ 1692: [Usaco2007 Dec]队列变换 [后缀数组 贪心]

    1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1383  Solved: 582[Submit][St ...

  8. HDOJ 1051. Wooden Sticks 贪心 结构体排序

    Wooden Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  9. HDOJ 1009. Fat Mouse' Trade 贪心 结构体排序

    FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. 把axios挂载到vue实例上面/==Axios 各种请求方式传递参数格式

    /*ajax请求*/   import axios from 'axios'   axios.defaults.baseURL = 'https://api.douban.com/v2/movie' ...

  2. (十三)SpringBoot之Spring-Data-Jpa(二)CRUD实现以及添加自定义方法

    一.jpa中添加自定义方法 http://blog.csdn.net/qq_23660243/article/details/43194465 二.案例 1.3 引入jpa依赖 <depende ...

  3. 解决 Linux grep 不高亮显示

    今天偶然发现一个问题,在 grep 日志的过程中,搜出来一大坨但是被 grep 的那一段未高亮显示,属实有些难受,高亮显示是 Linux 的高亮本来就是 Linux 的功能,与连接工具(我用的 xsh ...

  4. 十三、Vue中的computed属性

    以下抄自https://www.cnblogs.com/gunelark/p/8492468.html 看了网上很多资料,对vue的computed讲解自己看的都不是很清晰,今天忙里抽闲,和同事们又闲 ...

  5. 客户端相关知识学习(十一)之Android H5交互Webview实现localStorage数据存储

    前言 最近有一个需求是和在app中前端本地存储相关的,所以恶补了一下相关知识 webView开启支持H5 LocalStorage存储 有些时候我们发现写的本地存储没有起作用,那是因为默认WebVie ...

  6. SpringBoot mysql出现The server time zone value '�й���׼ʱ��' is unrecogni

    MySql :8.0.18 引入的mysql驱动: SpringBoot整合Mybatis的框架,在访问Controller的时候 : ava.sql.SQLException: The server ...

  7. SAP应用真的不性感么

    这是一个问题. 上图的One Order是楼下一个部门领导让我给他的团队做的一个古老框架的session. 这个框架诞生于2000年,采用纯面向过程的思路开发.因为上世纪90年代ABAP开始引入对面向 ...

  8. 1.volatile关键字 内存可见性

    Java JUC 简介 在 Java 5.0 提供了 java.util.concurrent (简称JUC )包,在此包中增加了在并发编程中很常用的实用工具类,用于定义类似于线程的自定义子系统,包括 ...

  9. Kinect for Windows SDK开发入门(三):基础知识 下

    原文来自:http://www.cnblogs.com/yangecnu/archive/2012/04/02/KinectSDK_Application_Fundamentals_Part2.htm ...

  10. python 学习笔记_1 pip安装、卸载、更新包相关操作及数据类型学习

    '''prepare_1 pip安装.卸载.更新组件type 各数据类型''' py -3 -m pip py -3 -m pip listpy -3 -m pip show nosepy -3 -m ...