Painter
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5621   Accepted: 3228

Description

The local toy store sells small fingerpainting kits with between three and twelve 50ml bottles of paint, each a different color. The paints are bright and fun to work with, and have the useful property that if you mix X ml each of any three different colors, you get X ml of gray. (The paints are thick and "airy", almost like cake frosting, and when you mix them together the volume doesn't increase, the paint just gets more dense.) None of the individual colors are gray; the only way to get gray is by mixing exactly three distinct colors, but it doesn't matter which three. Your friend Emily is an elementary school teacher and every Friday she does a fingerpainting project with her class. Given the number of different colors needed, the amount of each color, and the amount of gray, your job is to calculate the number of kits needed for her class.

Input

The input consists of one or more test cases, followed by a line containing only zero that signals the end of the input. Each test case consists of a single line of five or more integers, which are separated by a space. The first integer N is the number of different colors (3 <= N <= 12). Following that are N different nonnegative integers, each at most 1,000, that specify the amount of each color needed. Last is a nonnegative integer G <= 1,000 that specifies the amount of gray needed. All quantities are in ml.

Output

For each test case, output the smallest number of fingerpainting kits sufficient to provide the required amounts of all the colors and gray. Note that all grays are considered equal, so in order to find the minimum number of kits for a test case you may need to make grays using different combinations of three distinct colors.

Sample Input

3 40 95 21 0
7 25 60 400 250 0 60 0 500
4 90 95 75 95 10
4 90 95 75 95 11
5 0 0 0 0 0 333
0

Sample Output

2
8
2
3
4

Source

  思路:

给出几种颜色需求的ml量,然后最后一个数是灰色需求量,灰色可以由任何三中不同颜色的颜色组成,每个颜料盒有所给出的颜色的炎凉50ml

问最少给出几个颜料盒,可以组成所需求颜色

显然贪心可以解决,先求出满足的普通色所需的最小盒数,然后把剩余颜料从大到小排列,那前三种每个取出1ml组成1

ml的灰色,在这里本来我是把选出三个颜色中,直接选取第三个(最小容量)的所有容量k,组成kml的灰色,后来发现不行,贪心必须每次都要要求最好

所以每次1ml来选才能达到要求

代码:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<algorithm>
#define N 10000
using namespace std;
int n,col[N],mx=-1,gray,cnt;
bool cmp(int a,int b){return a>b;}
int main()
{
while(scanf("%d",&n) == 1 && n != 0)
{
mx=-1,cnt=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&col[i]);
mx=max(mx,col[i]);
}
scanf("%d",&gray);
cnt+=(mx/50);
if(mx%50!=0)cnt++;
for(int i=1;i<=n;i++)col[i]=cnt*50-col[i];
while(gray>0)
{ sort(col+1,col+n+1,cmp);
if(col[3]>0)
{
gray--;
col[1]--;
col[2]--;
col[3]--;
}
else
{
cnt++;
for(int i=1;i<=n;i++)col[i]+=50;
}
}
printf("%d\n",cnt);
}
}

【poj2709】Painter--贪心的更多相关文章

  1. POJ2709 染料贪心

    题意:       要搭配出来n种颜料,每种颜料要用mi升,除了这n种颜色还有一个合成灰色的毫升数,灰色是由三种不同的颜色合成的,三种m m m 的不同颜色能合成m升灰色,然后问你满足要求至少要多少盒 ...

  2. poj2709 贪心基础

    D - 贪心 基础 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     64bi ...

  3. poj 1681 Painter's Problem

    Painter's Problem 题意:给一个n*n(1 <= n <= 15)具有初始颜色(颜色只有yellow&white两种,即01矩阵)的square染色,每次对一个方格 ...

  4. POJ 2706 Painter

    Painter Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3157   Accepted: 1962 Descripti ...

  5. poj_2709 贪心算法

    poj 2709 painter 题目要求 给定涂料,每套涂料含有3-12种不同的颜色(开始时候给定选用的颜料套的颜色数目),且一套涂料中每种颜色均有50ml.且一套涂料中的任意三种不同的颜色各X m ...

  6. [SinGuLaRiTy] 贪心题目复习

    [SinGuLaRiTy-1024] Copyright (c) SinGuLaRiTy 2017. All Rights Reserved. [POJ 2709] 颜料 (Painter) 题目描述 ...

  7. BZOJ 1692: [Usaco2007 Dec]队列变换 [后缀数组 贪心]

    1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1383  Solved: 582[Submit][St ...

  8. HDOJ 1051. Wooden Sticks 贪心 结构体排序

    Wooden Sticks Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  9. HDOJ 1009. Fat Mouse' Trade 贪心 结构体排序

    FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

随机推荐

  1. (十)web服务与javaweb结合(1)

    一.解决方法 A . 编写一个监听器,在监听器中发布服务 二.案例一 方法A:编写一个监听器,在监听器中发布服务 1. 编写服务接口 package com.shyroke.service; impo ...

  2. kong网关命令(一)

    上次在虚拟机里安装kong网关后,因为版本(1.4)太高,目前Kong Dashboard无法支持, 后续发现Git上有个开源工具Kong admin ui,下载源码并部署到NGINX. 但是发现使用 ...

  3. 如何把SAP WebIDE里的Web项目同Github仓库连接起来

    我们在SAP WebIDE里进行UI5应用开发时,当然也希望能将开发的代码纳入到github版本管理中去. 步骤其实非常简单. 右键点击WebIDE里UI5应用,git->Initialize ...

  4. Join 和 App

    在关系型数据库系统中,为了满足第三范式(3NF),需要将满足“传递依赖”的表分离成单独的表,通过Join 子句将相关表进行连接,Join子句共有三种类型:外连接,内连接,交叉连接:外连接分为:left ...

  5. linux分析工具之top命令详解

    Linux系统可以通过top命令查看系统的CPU.内存.运行时间.交换分区.执行的线程等信息.通过top命令可以有效的发现系统的缺陷出在哪里.是内存不够.CPU处理能力不够.IO读写过高. 一.top ...

  6. MYSQL8.0以上版本ROOT密码报错及修改

    在登录数据库过程中,如果遇到忘记root密码时,该如何解决? 1.使用管理员权限打开命令提示符,在命令行中输入: net stop mysql  2.待mysql服务停止后,输入: mysqld -- ...

  7. 后台向前台响应的json数据格式的一些问题

    最近在写后台向前台easyUI页面发送数据时遇到的一些报错. 首先easyUI内部封装了许多的方法和对象,以至于很多参数都不清楚,需要查询,其次easyUI也是有内置ajax所以从后台响应回来的数据一 ...

  8. Image Processing and Analysis_21_Scale Space:Scale-space filtering——1987

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  9. 服务器CPU架构演变过程

    第一阶段: 单CPU,没啥好说的.和我们今天打游戏的台式机差不多. 第二阶段: 双CPU 或者 多CPU的SMP架构 或者 AMP架构.参考:http://www.lauterbach.com/smp ...

  10. 使用pyinstaller打包使用cx_Oracle模块的程序出现The specified module could not be found的问题

    pyinstaller看起来并不会将动态链接库自动打包,所以我们需要告诉pyinstaller要打包哪些动态链接库,步骤如下(假设python文件名为 oracletest.py): 1. 使用pyi ...