LC 990. Satisfiability of Equality Equations
Given an array equations of strings that represent relationships between variables, each string equations[i] has length 4 and takes one of two different forms: "a==b" or "a!=b". Here, a and b are lowercase letters (not necessarily different) that represent one-letter variable names.
Return true if and only if it is possible to assign integers to variable names so as to satisfy all the given equations.
Example 1:
Input: ["a==b","b!=a"]
Output: false
Explanation: If we assign say, a = 1 and b = 1, then the first equation is satisfied, but not the second. There is no way to assign the variables to satisfy both equations.
Example 2:
Input: ["b==a","a==b"]
Output: true
Explanation: We could assign a = 1 and b = 1 to satisfy both equations.
Example 3:
Input: ["a==b","b==c","a==c"]
Output: true
Example 4:
Input: ["a==b","b!=c","c==a"]
Output: false
Example 5:
Input: ["c==c","b==d","x!=z"]
Output: true
Note:
1 <= equations.length <= 500equations[i].length == 4equations[i][0]andequations[i][3]are lowercase lettersequations[i][1]is either'='or'!'equations[i][2]is'='
class Solution {
private:
int arr[];
public:
void unionab(int a, int b) {
arr[parent(a)] = arr[parent(b)];
}
int parent(int a) {
if(arr[a] != a) return parent(arr[a]);
return a;
}
bool uninit(int a) {
return arr[a] == a ? true : false;
}
bool hassameroot(int a, int b) {
return parent(a) == parent(b);
}
bool equationsPossible(vector<string>& equations) {
for(int i=; i<; i++) arr[i] = i;
for(int i=; i<equations.size(); i++) {
int a = ((int)equations[i][] - (int)'a');
int b = ((int)equations[i][] - (int)'a');
if ((int)equations[i][] == (int)'=') {
if(!hassameroot(a,b)) unionab(a,b);
}
}
for(int i=; i<equations.size(); i++) {
int a = ((int)equations[i][] - (int)'a');
int b = ((int)equations[i][] - (int)'a');
if((int)equations[i][] == (int)'!') {
if(hassameroot(a,b)) return false;
}
}
return true;
}
};
LC 990. Satisfiability of Equality Equations的更多相关文章
- 【medium】990. Satisfiability of Equality Equations 并查集
Given an array equations of strings that represent relationships between variables, each string equa ...
- LeetCode 990. Satisfiability of Equality Equations
原题链接在这里:https://leetcode.com/problems/satisfiability-of-equality-equations/ 题目: Given an array equat ...
- 【leetcode】990. Satisfiability of Equality Equations
题目如下: Given an array equations of strings that represent relationships between variables, each strin ...
- 【LeetCode】990. Satisfiability of Equality Equations 解题报告(C++ & python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS 并查集 日期 题目地址:https://le ...
- Satisfiability of Equality Equations - LeetCode
目录 题目链接 注意点 解法 小结 题目链接 Satisfiability of Equality Equations - LeetCode 注意点 必须要初始化pre 解法 解法一:典型的并查集算法 ...
- [Swift]LeetCode990. 等式方程的可满足性 | Satisfiability of Equality Equations
Given an array equations of strings that represent relationships between variables, each string equa ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- 四种比较简单的图像显著性区域特征提取方法原理及实现-----> AC/HC/LC/FT。
laviewpbt 2014.8.4 编辑 Email:laviewpbt@sina.com QQ:33184777 最近闲来蛋痛,看了一些显著性检测的文章,只是简单的看看,并没有深入的研究,以 ...
- HDU 4569 Special equations(取模)
Special equations Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
随机推荐
- 详解Linux磁盘管理与文件系统
磁盘基础 硬盘结构 物理结构 盘片:硬盘有多个盘片,每盘片 2 面. 磁头:每面一个磁头. 数据结构 扇区:磁盘上的每个磁道被等分为若干个弧段,这些弧段便是硬盘的扇区. 硬盘的第一个扇区,叫做引导扇区 ...
- 用js刷剑指offer(二叉搜索树的后序遍历序列)
题目描述 输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则输出Yes,否则输出No.假设输入的数组的任意两个数字都互不相同. 牛客网链接 js代码 function Verif ...
- html知识补充
1.点击超链接跳转到新窗口 <a href="http://www.baidu.com" target="_blank">百度一下</a> ...
- Python调用R编程——rpy2
在Python调用R,最常见的方式是使用rpy2模块. 简介 模块 The package is made of several sub-packages or modules: rpy2.rinte ...
- Django之路——2 Django的安装
Django的安装分为两种方式,一种是命令行安装,另外一种是pycharm安装.在这里只说一种在命令行里面安装的 1.命令行安装 这个自不必多说,直接上干货,如果遇到pip版本过低,安装失败的,请自自 ...
- JavaScript异步学习笔记——主线程和任务队列
任务队列 单线程就意味着,所有任务需要排队,前一个任务结束,才会执行后一个任务.如果前一个任务耗时很长,后一个任务就不得不一直等着. 同步任务指的是,在主线程上排队执行的任务,只有前一个任务执行完毕, ...
- 电脑视频下载王-Apowersoft Video Download Capture v6.3.6
Apowersoft Video Download Capture (视频下载王) 是由香港Apowersoft出品的一款集视频下载.视频转换.媒体播放及录屏等功能为一体的多功能视频下载工具,简便实用 ...
- Mac配置Fiddler抓包工具
前言 一直以来都是在Win环境下工作,对于抓包工具,自然当属Fiddler最最出色,不过Fiddler是在.Net runtime环境下运行的,所以想要在Mac下使用,需要配置一些依赖.在试过了Cha ...
- OSS的简单使用
OSS简介 Object Storage Service,简称 OSS,是阿里云提供的海量.安全.低成本.高可靠的云存储服务. 它具有与平台无关的RESTful API接口,能够提供99.999999 ...
- [AGC028B]Removing Blocks 概率与期望
考虑算每一个位置在所有情况的期望值乘以全排列似乎就是答案. 那么对于 $i$,如果要由 $j$ 来贡献的话就要满足 $j$ 在 $i....j-1$ 之前先拿. 而在拿 $j$ 时,先于 $i...j ...