python信用评分卡建模(附代码,博主录制)

https://zhuanlan.zhihu.com/p/20603744参考

在机器学习的二分类问题中,WOE(Weight of Evidence)和Information Value的用来对输入变量进行编码及预测能力评估。安利一下自己写的用来计算这两个值的python工具,目前没有发现python有现成的工具,就自己写了一个。

GitHub地址:GitHub - patrick201/information_value

这两个公式的原始出处没有找到,但现在公开资料解释已经很多了,公式偷懒截图公式如下(来自引用的新浪博客),附上的引用链接有一个很好的举例说明。

IV的公式借鉴了信息熵的公式,形式上长的很像但不完全相同。IV本质上市WOE的加权和,而WOE反应的是logistic回归中odds ratio的概念ln(p1 / p0),再看其前面的权重p1 - p0也反应的是这个意思。所以可以理解成IV是对这个变量在概率优势上的能力打分。

特征变量的每个category都对应一个WOE值。比如例子引用中的年龄变量划分了4个变量,对应的有4个WOE值;再将它们加权求和之后就得到这个变量的IV值。IV值可以用来评估该变量预测能力的强弱。引用文章中给出了一个判断的标准,直接贴在下。这个标准作为一个参考吧,具体用的时候得结合手头的数据集具体分析。

Information Value Predictive Power< 0.02useless for prediction0.02 to 0.1Weak predictor0.1 to 0.3Medium predictor0.3 to 0.5Strong predictor >0.5Suspicious or too good to be true

目前就一个工具类information_value.py,里面主要就下面几个方法。需要在传入前将数据集自己做离散化,否则目前只会默认无脑的做“5等分”离散化。:)

woe -- 计算输入数据集每个变量的woe和iv,并返回所有变量对应这两个值的列表,woe是一个字典dictionary的列表,因为不同的变量有不同的category取值。

woe_single_x -- 计算单个变量的woe和iv。

woe_replace -- 将数据集中变量的category取值用其对应的woe值替换,并返回替换后的数据集。有的实验称用woe替换后训练的分类器能会更好,所以提供了这么个函数。

combined_iv -- 计算将一些变量组合后对应的woe及iv值。这个函数主要是想服务于一些需要大量迭代的变量选择技术,比如有的文献提到用GA或PSO算法来选择优化的变量组合。而如果将iv计算来作为迭代时的“fit function”,计算量是非常小的。但是如果组合的变量太多的话,组合起来的category类别会很多,影响使用,所以合适组合的变量数量需要根据手头的数据量及分布情况来试验。

试验了一个scikit learn自带的数据集(当然自带的这个相对容易分类),在“评估变量重要性”这个方向上与随机森林方法进行了比较,结果如下两个图。可以看到前几个“很重要”的变量,以及最后几个“很不重要”的变量,根据IV评估的结果与RF给出的结果是很相近的。但是IV的计算量要比训练一个随机森林模型小多了。当然并不是每个手头的数据都能符合这样的结果,需要具体试验,但至少多了一个选择可以供我们参考。如果IV的结果能近似达到RF的结果,在大规模进行计算的时候也是一个挺吸引人的备选项。

随机森林中队变量重要性计算的思路很有意思,对某个自变量加随机扰动bump,然后看预测误差前后变化有多大。越大的认为这个变量对结果越有影响,也就是越重要。这与以前在银行工作时pricing框架下计算奇异衍生品组合的greeks思路很像,后者也是对影响衍生品的风险因子进行bump看组合的pv(present value)变化多少。实用又神奇的思路。

根据使用的情况我会尽量不断调整修改代码,欢迎大家试用并轻拍。Feature Selection是个巨大的坑,但希望我的小身板也能做些力所能及的。:)

python风控建模实战lendingClub(博主录制,catboost,lightgbm建模,2K超清分辨率)

https://study.163.com/course/courseMain.htm?courseId=1005988013&share=2&shareId=400000000398149

微信扫二维码,免费学习更多python资源

WOE1-Feature Selection 相关:一个计算WOE和Information Value的python工具的更多相关文章

  1. 机器学习-特征选择 Feature Selection 研究报告

    原文:http://www.cnblogs.com/xbinworld/archive/2012/11/27/2791504.html 机器学习-特征选择 Feature Selection 研究报告 ...

  2. [Feature] Feature selection

    Ref: 1.13. Feature selection Ref: 1.13. 特征选择(Feature selection) 大纲列表 3.1 Filter 3.1.1 方差选择法 3.1.2 相关 ...

  3. 特征选择与稀疏学习(Feature Selection and Sparse Learning)

    本博客是针对周志华教授所著<机器学习>的"第11章 特征选择与稀疏学习"部分内容的学习笔记. 在实际使用机器学习算法的过程中,往往在特征选择这一块是一个比较让人模棱两可 ...

  4. 【转】[特征选择] An Introduction to Feature Selection 翻译

    中文原文链接:http://www.cnblogs.com/AHappyCat/p/5318042.html 英文原文链接: An Introduction to Feature Selection ...

  5. 10-3[RF] feature selection

    main idea: 计算每一个feature的重要性,选取重要性前k的feature: 衡量一个feature重要的方式:如果一个feature重要,则在这个feature上加上noise,会对最后 ...

  6. The Practical Importance of Feature Selection(变量筛选重要性)

    python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&u ...

  7. [Feature] Feature selection - Embedded topic

    基于惩罚项的特征选择法 一.直接对特征筛选 Ref: 1.13.4. 使用SelectFromModel选择特征(Feature selection using SelectFromModel) 通过 ...

  8. Feature Engineering and Feature Selection

    首先,弄清楚三个相似但是不同的任务: feature extraction and feature engineering: 将原始数据转换为特征,以适合建模. feature transformat ...

  9. 机器学习-特征工程-Feature generation 和 Feature selection

    概述:上节咱们说了特征工程是机器学习的一个核心内容.然后咱们已经学习了特征工程中的基础内容,分别是missing value handling和categorical data encoding的一些 ...

随机推荐

  1. PCB拼板

  2. C# NET 微信临时素材上传

    最近在做这个,一开始也是不明白为什么给个URL带着两个参数就直接上传了,网上看了很多都是PHP,但是PHP没看过是不会 的 所以就一直在找网上什么Demo之类的讲解,最后还是不错找到了一个比较好理解的 ...

  3. Hdu 1564 1*2矩阵覆盖棋局博弈

    n*n的矩阵如果n为偶数 则可被1*2的矩形完全覆盖 如果n为奇数 则除起点外 其他各自可被1*2矩形完全覆盖 所以当n为偶数 先手赢 n为奇数 后手赢 #include<bits/stdc++ ...

  4. libusb_bulk_transfer返回值不是0

    libusb_bulk_transfer返回值不是0 libusb_bulk_transfer返回值不是0libusb_bulk_transfer返回值不是0 ?????

  5. Java nio 理解

    Java nio 称为Java new IO ,对Java io而言的.他有两个主要的概念:缓存.通道. 在程序中,数据的来源或写入,要么网络.要么硬盘.所有通道分为:文件通道.TCP通道.UDP通道 ...

  6. 函数参数-arguments-reset参数

    1.JS中用:arguments 1)存放实参的集合,是一个类似于数组的对象,只有数组的 length,没有数组方法 function add1(a,b,c) { console.log(argume ...

  7. SSH框架整合报错org.springframework.web.context.ContextLoaderListener

    是因为在导入的jar包中缺少了一个 org.springframework.web_3.1.4.release.jar 在网上下载即可 下载地址: http://www.java2s.com/Code ...

  8. 修改mysql5.7数据表字符集编码的命令

    查看表中字符集的命令 show variables like '%char%' 更改数据库中数据表的字符集靠谱命令,亲测可行,在workbench和phpmyadmin上都通过 alter table ...

  9. Python之PyLint自动检查代码

    PyLint的下载地址:https://pypi.python.org/pypi/pylint PyLint的官网:http://www.pylint.org/ 从源码发行版安装,解压文件包并且运行 ...

  10. Python3-Set

    # Set(集合) # 集合(set)是一个无序不重复元素的序列. # 基本功能是进行成员关系测试和删除重复元素. # 可以使用大括号 { } 或者 set() 函数创建集合,注意:创建一个空集合必须 ...