pandas之数据选择
pandas中有三种索引方法:.loc
,.iloc
和[]
,注意:.ix
的用法在0.20.0中已经不建议使用了
import pandas as pd
import numpy as np
In [5]:
dates = pd.date_range("20170101",periods=6)
df1 = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=["A","B","C","D"])
df1
Out[5]:
A | B | C | D | |
---|---|---|---|---|
2017-01-01 | 0 | 1 | 2 | 3 |
2017-01-02 | 4 | 5 | 6 | 7 |
2017-01-03 | 8 | 9 | 10 | 11 |
2017-01-04 | 12 | 13 | 14 | 15 |
2017-01-05 | 16 | 17 | 18 | 19 |
2017-01-06 | 20 | 21 | 22 | 23 |
In [6]:
将dataframe的列获取为一个series
df1["A"]#将dataframe的列获取为一个series
Out[6]:
2017-01-01 0
2017-01-02 4
2017-01-03 8
2017-01-04 12
2017-01-05 16
2017-01-06 20
Freq: D, Name: A, dtype: int32
In [7]:
df1.A#另一种获取
Out[7]:
2017-01-01 0
2017-01-02 4
2017-01-03 8
2017-01-04 12
2017-01-05 16
2017-01-06 20
Freq: D, Name: A, dtype: int32
In [8]:
切片,获取前2行
df1[0:2]#切片,获取前2行
Out[8]:
A | B | C | D | |
---|---|---|---|---|
2017-01-01 | 0 | 1 | 2 | 3 |
2017-01-02 | 4 | 5 | 6 | 7 |
In [9]:
通过索引获取指定行
df1["20170102":"20170104"]#通过索引获取指定行
Out[9]:
A | B | C | D | |
---|---|---|---|---|
2017-01-02 | 4 | 5 | 6 | 7 |
2017-01-03 | 8 | 9 | 10 | 11 |
2017-01-04 | 12 | 13 | 14 | 15 |
In [11]:
通过标签选择数据
#通过标签选择数据
df1.loc["20170102"]
Out[11]:
A 4
B 5
C 6
D 7
Name: 2017-01-02 00:00:00, dtype: int32
In [12]:
提取某个行的指定列
df1.loc["20170102",["A","C"]]#提取某个行的指定列
Out[12]:
A 4
C 6
Name: 2017-01-02 00:00:00, dtype: int32
In [13]:
df1.loc[:,["A","B"]]
Out[13]:
A | B | |
---|---|---|
2017-01-01 | 0 | 1 |
2017-01-02 | 4 | 5 |
2017-01-03 | 8 | 9 |
2017-01-04 | 12 | 13 |
2017-01-05 | 16 | 17 |
2017-01-06 | 20 | 21 |
In [14]:
通过位置选择数据
#通过位置选择数据
df1.iloc[2]#提取第二行
Out[14]:
A 8
B 9
C 10
D 11
Name: 2017-01-03 00:00:00, dtype: int32
In [15]:
df1.iloc[1:3,2:4]
Out[15]:
C | D | |
---|---|---|
2017-01-02 | 6 | 7 |
2017-01-03 | 10 | 11 |
In [18]:
提取不连续的行和列
#提取不连续的行和列
df1.iloc[[1,2,4],[1,3]]
Out[18]:
B | D | |
---|---|---|
2017-01-02 | 5 | 7 |
2017-01-03 | 9 | 11 |
2017-01-05 | 17 | 19 |
In [20]:
#混合标签位置选择
df1.ix[2:4,["A","C"]]
c:\users\wuzs\appdata\local\programs\python\python36-32\lib\site-packages\ipykernel_launcher.py:2: FutureWarning:
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing
See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ix-indexer-is-deprecated
c:\users\wuzs\appdata\local\programs\python\python36-32\lib\site-packages\pandas\core\indexing.py:808: FutureWarning:
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing
See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ix-indexer-is-deprecated
retval = getattr(retval, self.name)._getitem_axis(key, axis=i)
Out[20]:
A | C | |
---|---|---|
2017-01-03 | 8 | 10 |
2017-01-04 | 12 | 14 |
In [23]:
df1.ix["20170102":"20170104",2:4]
c:\users\wuzs\appdata\local\programs\python\python36-32\lib\site-packages\ipykernel_launcher.py:1: FutureWarning:
.ix is deprecated. Please use
.loc for label based indexing or
.iloc for positional indexing
See the documentation here:
http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ix-indexer-is-deprecated
"""Entry point for launching an IPython kernel.
Out[23]:
C | D | |
---|---|---|
2017-01-02 | 6 | 7 |
2017-01-03 | 10 | 11 |
2017-01-04 | 14 | 15 |
In [24]:
判断某一行的值大小
#判断某一行的值大小
df1.A >6
Out[24]:
2017-01-01 False
2017-01-02 False
2017-01-03 True
2017-01-04 True
2017-01-05 True
2017-01-06 True
Freq: D, Name: A, dtype: bool
In [25]:
df1[df1.A>6]#根据判断组成新的DataFrame
Out[25]:
A | B | C | D | |
---|---|---|---|---|
2017-01-03 | 8 | 9 | 10 | 11 |
2017-01-04 | 12 | 13 | 14 | 15 |
2017-01-05 | 16 | 17 | 18 | 19 |
2017-01-06 | 20 | 21 | 22 | 23 |
In [ ]:
pandas之数据选择的更多相关文章
- Pandas:DataFrame数据选择方法(索引)
#首先创建我们的Series对象,然后合并到dataframe对象里面去 import pandas as pd import numpy as np area=pd.Series({,,,}) po ...
- 【转载】使用Pandas对数据进行筛选和排序
使用Pandas对数据进行筛选和排序 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas对数据进行筛选和排序 目录: sort() 对单列数据进行排序 对多列数据进行排序 获取金额最小前10项 ...
- 【转载】使用Pandas创建数据透视表
使用Pandas创建数据透视表 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas创建数据透视表 目录 pandas.pivot_table() 创建简单的数据透视表 增加一个行维度(inde ...
- 基于pandas进行数据预处理
很久没用pandas,有些有点忘了,转载一个比较完整的利用pandas进行数据预处理的博文:https://blog.csdn.net/u014400239/article/details/70846 ...
- pandas 新增数据列(直接赋值、apply,assign、分条件赋值)
# pandas新增数据列(直接赋值.apply.assign.分条件赋值) # pandas在进行数据分析时,经常需要按照一定条件创建新的数据列,然后进行进一步分析 # 1 直接赋值 # 2 df. ...
- python-数据描述与分析2(利用Pandas处理数据 缺失值的处理 数据库的使用)
2.利用Pandas处理数据2.1 汇总计算当我们知道如何加载数据后,接下来就是如何处理数据,虽然之前的赋值计算也是一种计算,但是如果Pandas的作用就停留在此,那我们也许只是看到了它的冰山一角,它 ...
- 利用Python进行数据分析(12) pandas基础: 数据合并
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...
- 【转载】使用Pandas进行数据提取
使用Pandas进行数据提取 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据提取 目录 set_index() ix 按行提取信息 按列提取信息 按行与列提取信息 提取特定日期的信 ...
- 【转载】使用Pandas进行数据匹配
使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式 ...
随机推荐
- 关于SYSLINUX的一些重要描述摘录
以下资源都来自官方文档,原文摘录 The SYSLINUX suite contains the following boot loaders ("derivatives"), f ...
- unix/linux静态库简介
一.创建静态库: 1.写源程序 2.编译源程序,生成.o文件 3.使用ar打包工具生成静态库 ar -r libxxx.a xxx1.o xxx2.o.../*.o(通配符方式) 4.提供头文件,方便 ...
- python对ip地址排序、对列表进行去重
一:使用python对ip地址排序所用代码示例一: import socket iplist = ['10.5.11.1','192.168.1.33','10.5.2.4','10.5.1.3',' ...
- [ZOJ 3076] Break Standard Weight
题目连接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5009 题意:给你两个数字,可以把其中一个拆成两个数字,计算这三个数字 ...
- facenet中pairs文件制作
1.对图片进行重命名 """Rename the image based on the folder name""" import os i ...
- MySQL Audit日志审计
一.简介 数据库审计能够实时记录网络上的数据库活动,对数据库操作进行细粒度审计的合规性管理,对数据库受到的风险行为进行告警,对攻击行为进行阻断,它通过对用户访问数据库行为的记录.分析和汇报,用来帮助用 ...
- 什么是JWT?Token与Session的区别?
什么是JWT Json web token (JWT), 是为了在网络应用环境间传递声明而执行的一种基于JSON的开放标准((RFC 7519).该token被设计为紧凑且安全的,特别适用于分布式站点 ...
- 四 java web考点
一.GET和POST区别(参考Servlet&JSP学习笔记) <form>中method属性默认为GET. 1.使用POST的情况 GET跟随URL之后,请求参数长度有限,过长的 ...
- jpa单向一对多
单向一对多是一个类中的一条记录可对应另一个类的多条记录: 比如一个部门可对应多个员工: jpa中的实现步骤: one-to-many的one类中添加一个many类类型的set;比如部门类D ...
- luogu 5561 [Celeste-B]Mirror Magic 后缀数组+RMQ+multiset
思路肯定是没有问题,但是不知道为啥一直 TLE 两个点~ #include <bits/stdc++.h> #define N 2000006 #define setIO(s) freop ...