李宏毅 Gradient Descent Demo 代码讲解
何为梯度下降,直白点就是,链式求导法则,不断更新变量值。
Loss函数
python代码如下
import numpy as np
import matplotlib.pyplot as plt # y_data = b + w * x_data
x_data = [338., 333., 328., 207., 226., 25., 179., 60., 208., 606.] # 10 个数
y_data = [640., 633., 619., 393., 428., 27., 193., 66., 226., 1591.] # 10 个数 x = np.arange(-200, -100, 1) # bias
y = np.arange(-5, 5, 0.1) # weight
z = np.zeros((len(x), len(y))) # zeros函数表示输出的数组为 100行 100列 #X, Y = np.meshgrid(x, y) 个人感觉这句话没用。。。 for i in range(len(x)):
for j in range(len(y)):
b = x[i]
w = y[j]
z[j][i] = 0
for n in range(len(x_data)):
# z[j][i]为 b=x[i] 及 w=y[j] 时,对应的 Loss Function 的大小
z[j][i] = z[j][i] + (y_data[n] - b - w * x_data[n]) ** 2
z[j][i] = z[j][i] / len(x_data) # 求 loss function 均值 # y_data = b + w * x_data
b = -120 # initial b
w = -4 # initial w
lr = 0.0000001 # learning rate
iteration = 100000 # 迭代运行次数 # store initial values for plotting
b_history = [b]
w_history = [w] # iterations
for i in range(iteration): # 在 100000 次迭代下,看最后结果
b_grad = 0.0 # 对 b_grad 重新赋值为0
w_grad = 0.0 # 对 w_grad 重新赋值为0
for n in range(len(x_data)):
# 此处应该注意的是,求导的是Loss函数,因此对应的变量是w、b,是看w、b在各自的轴上的移动
b_grad = b_grad + 2.0 * (y_data[n] - b - w * x_data[n]) * ( - 1.0)
w_grad = w_grad + 2.0 * (y_data[n] - b - w * x_data[n]) * ( - x_data[n]) # update parameters
b = b - lr * b_grad
w = w - lr * w_grad # store parameters for plotting
b_history.append(b)
w_history.append(w) # plot the figure
plt.contourf(x, y, z, 50, alpha = 0.5, cmap = plt.get_cmap('jet'))
plt.plot([-188.4], [2.67], 'x', ms = 12, markeredgewidth = 3, color = 'orange')
plt.plot(b_history, w_history, 'o-', ms = 3, lw = 1.5, color = 'black')
plt.xlim(-200, -100)
plt.ylim(-5, 5)
plt.xlabel(r'$b$', fontsize=16)
plt.ylabel(r'$w$', fontsize=16)
plt.show()
当learning rate 即 lr = 0.0000001时

当learning rate 即 lr = 0.000001时

learning rate 即 lr = 0.00001时

可以看到效果不是很好 所以改变learning rate
import numpy as np
import matplotlib.pyplot as plt # y_data = b + w * x_data
x_data = [338., 333., 328., 207., 226., 25., 179., 60., 208., 606.] # 10 个数
y_data = [640., 633., 619., 393., 428., 27., 193., 66., 226., 1591.] # 10 个数 x = np.arange(-200, -100, 1) # bias
y = np.arange(-5, 5, 0.1) # weight
z = np.zeros((len(x), len(y))) # zeros函数表示输出的数组为 100 行 100 列 # X, Y = np.meshgrid(x, y) for i in range(len(x)):
for j in range(len(y)):
b = x[i]
w = y[j]
z[j][i] = 0
for n in range(len(x_data)):
# z[j][i]为 b=x[i] 及 w=y[j] 时,对应的 Loss Function 的大小
z[j][i] = z[j][i] + (y_data[n] - b - w * x_data[n]) ** 2
z[j][i] = z[j][i] / len(x_data) # 求 loss function 均值 # ydata = b + w * xdata
b = -120 # initial b
w = -4 # initial w
lr = 1 # learning rate
iteration = 100000 # 迭代运行次数 # store initial values for plotting
b_history = [b]
w_history = [w] # 个性化 w 和 b 的 learning rate
lr_b = 0
lr_w = 0 # iterations
for i in range(iteration): # 在 100000 次迭代下,看最后结果
b_grad = 0.0 # 对 b_grad 重新赋值为0
w_grad = 0.0 # 对 w_grad 重新赋值为0
for n in range(len(x_data)):
# 此处应该注意的是,求导的是L函数,因此对应的变量是w、b,是看w、b在各自的轴上的移动
b_grad = b_grad + 2.0 * (y_data[n] - b - w * x_data[n]) * (- 1.0)
w_grad = w_grad + 2.0 * (y_data[n] - b - w * x_data[n]) * (- x_data[n]) lr_b = lr_b + b_grad ** 2
lr_w = lr_w + w_grad ** 2 # update parameters
b = b - lr / np.sqrt(lr_b) * b_grad
w = w - lr / np.sqrt(lr_w) * w_grad # store parameters for plotting
b_history.append(b)
w_history.append(w) # plot the figure
plt.contourf(x, y, z, 50, alpha=0.5, cmap=plt.get_cmap('jet'))
plt.plot([-188.4], [2.67], 'x', ms=12, markeredgewidth=3, color='orange')
plt.plot(b_history, w_history, 'o-', ms=3, lw=1.5, color='black')
plt.xlim(-200, -100)
plt.ylim(-5, 5)
plt.xlabel(r'$b$', fontsize=16)
plt.ylabel(r'$w$', fontsize=16)
plt.show()
结果展示

一些说明:
np.array np.asarray的区别
array和asarry都可以将结构数据转换为ndarray类型
但是主要的区别在于当数据源是ndarray时,array仍会copy出一个副本,占用新的内存,但asarray不会。
np.meshgrid的作用
生成网格点坐标矩阵
李宏毅 Gradient Descent Demo 代码讲解的更多相关文章
- 几种梯度下降方法对比(Batch gradient descent、Mini-batch gradient descent 和 stochastic gradient descent)
https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种 ...
- 李宏毅机器学习笔记2:Gradient Descent(附带详细的原理推导过程)
李宏毅老师的机器学习课程和吴恩达老师的机器学习课程都是都是ML和DL非常好的入门资料,在YouTube.网易云课堂.B站都能观看到相应的课程视频,接下来这一系列的博客我都将记录老师上课的笔记以及自己对 ...
- 李宏毅机器学习课程---4、Gradient Descent (如何优化 )
李宏毅机器学习课程---4.Gradient Descent (如何优化) 一.总结 一句话总结: 调整learning rates:Tuning your learning rates 随机Grad ...
- Logistic Regression Using Gradient Descent -- Binary Classification 代码实现
1. 原理 Cost function Theta 2. Python # -*- coding:utf8 -*- import numpy as np import matplotlib.pyplo ...
- Linear Regression Using Gradient Descent 代码实现
参考吴恩达<机器学习>, 进行 Octave, Python(Numpy), C++(Eigen) 的原理实现, 同时用 scikit-learn, TensorFlow, dlib 进行 ...
- 【笔记】机器学习 - 李宏毅 - 4 - Gradient Descent
梯度下降 Gradient Descent 梯度下降是一种迭代法(与最小二乘法不同),目标是解决最优化问题:\({\theta}^* = arg min_{\theta} L({\theta})\), ...
- 【论文翻译】An overiview of gradient descent optimization algorithms
这篇论文最早是一篇2016年1月16日发表在Sebastian Ruder的博客.本文主要工作是对这篇论文与李宏毅课程相关的核心部分进行翻译. 论文全文翻译: An overview of gradi ...
- 梯度下降算法实现原理(Gradient Descent)
概述 梯度下降法(Gradient Descent)是一个算法,但不是像多元线性回归那样是一个具体做回归任务的算法,而是一个非常通用的优化算法来帮助一些机器学习算法求解出最优解的,所谓的通用就是很 ...
- 梯度下降(Gradient Descent)小结
在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法.这里就对梯度下降法做一个完整的总结. 1. 梯度 在微 ...
随机推荐
- centos7编译安装PHP7已经把你逼到去安定医院看门诊的地步?请看此文
本文援引自https://www.cnblogs.com/lamp01/p/10101659.html,亲测可行,特此鸣谢 地球上总有一群人是如此深爱PHP,但无奈的是编译安装的过程化特性,导致各种b ...
- CSS测试题Ⅰ
1.CSS 指的是? A. Computer Style Sheets B. Cascading Style Sheets C. Creative Style Sheets D. Colorf ...
- 「BZOJ 4565」「HAOI 2016」字符合并「区间状压DP」
题意 给一个长度为\(n(\leq 300)\)的\(01\)串,每次可以把\(k(\leq 8)\)个相邻字符合并,得到新字符和一定分数,最大化最后的得分 题解 考虑设计dp:\(dp[S][i][ ...
- vueApp打包
本地打包测试 http-server是一个基于node.js的简单的,零配置的命令行http服务器.安装:npm install http-server -g使用:http-server [path] ...
- vue 循环Redio
标准用法,做个笔记.(图示是elementUI,其他框架大同小异) <el-radio-group @change="changePayHandler" v-model=&q ...
- legend3---9、项目的日志以及调试信息数据量非常大
legend3---9.项目的日志以及调试信息数据量非常大 一.总结 一句话总结: legend2我开发调试,最近竟然发现日志等的信息有1.5G,数据量实在太大 1.juqery如何找后代? chil ...
- svg简单的应用
1.可以直接在html内写svg (1)width宽度,height高度 (2)xmlns svg的规则 <svg xmlns="http://www.w3.org/2000/svg& ...
- APScheduler 3.0.1浅析
简介 APScheduler是一个小巧而强大的Python类库,通过它你可以实现类似Unix系统cronjob类似的定时任务系统.使用之余,阅读一下源码,一方面有助于更好的使用它,另一方面,个人认为a ...
- layer.js错误Uncaught TypeError: i is not a function
最初是要写一个管理后台来着,项目中需要用到弹出层,但是没有前端配合,我一个小PHP需要去写这玩意,怎么办呢?查了一些资料,发现layer对我来说还行,文档写的也比较完全,学习成本不高,就下决心用这个了 ...
- Docker镜像搭建ubuntu下samba目录共享
第一种方法:(未使用) yum install docker // 下载镜像 docker pull dperson/samba // 启动镜像,具体看文档,但重要的配置是以下的注释 docker r ...