Bzoj 1566: [NOI2009]管道取珠(DP)
1566: [NOI2009]管道取珠
Time Limit: 20 Sec Memory Limit: 650 MB
Submit: 1558 Solved: 890
[Submit][Status][Discuss]
Description
![]()
![]()
Input
第一行包含两个整数n, m,分别表示上下两个管道中球的数目。 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型。其中A表示浅色球,B表示深色球。 第三行为一个AB字符串,长度为m,表示下管道中的情形。
Output
仅包含一行,即为 Sigma(Ai^2) i从1到k 除以1024523的余数。
Sample Input
2 1
AB
B
Sample Output
5
HINT
样例即为文中(图3)。共有两种不同的输出序列形式,序列BAB有1种产生方式,而序列BBA有2种产生方式,因此答案为5。
【大致数据规模】
约30%的数据满足 n, m ≤ 12;
/*
一道DP.
比较妙.
题意相同类型的序列有x个,对答案贡献是x^2。
等价于两个人各自进行操作,得到相同类型序列的方案数.
这个东西是比较好证的。
我们设一个合法序列状态是A,并且现在有x,y两种取法均能得到A
根据乘法原理,那么问题就转化为求A(x,y)二元组的个数.
想象一下现在有两个人正在取数,要求两个人取数相同的方案个数.
令f[i][j][k]表示
people 1 在上面取了i个,下面取了j个
people 2 在上面取了k个,下面取了i+j-k个
people1和people2都取了i+j个数的相同方案的方案个数。
然后枚举上一次取的位置转移即可。。
*/
#include<iostream>
#include<cstdio>
#define mod 1024523
#define MAXN 501
using namespace std;
char a[MAXN],b[MAXN];
int n,m,f[MAXN][MAXN][MAXN];
int main()
{
scanf("%d %d",&n,&m);
scanf("%s",a+1);
scanf("%s",b+1);
for(int i=1;i<=n/2;i++) swap(a[i],a[n-i+1]);
for(int i=1;i<=m/2;i++) swap(b[i],b[m-i+1]);
f[0][0][0]=1;
for(int i=0;i<=n;i++)
for(int j=0;j<=m;j++)
for(int k=0;k<=n;k++)
{
int l=i+j-k;int * p=&f[i][j][k];
if(l<0||l>m) continue;
if(i&&k&&a[i]==a[k]) *p=(*p+f[i-1][j][k-1])%mod;
if(i&&l&&a[i]==b[l]) *p=(*p+f[i-1][j][k])%mod;
if(j&&k&&b[j]==a[k]) *p=(*p+f[i][j-1][k-1])%mod;
if(j&&l&&b[j]==b[l]) *p=(*p+f[i][j-1][k])%mod;
}
printf("%d",f[n][m][n]);
return 0;
}
Bzoj 1566: [NOI2009]管道取珠(DP)的更多相关文章
- BZOJ.1566.[NOI2009]管道取珠(DP 思路)
BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...
- bzoj 1566: [NOI2009]管道取珠【dp】
想不出来想不出来 仔细考虑平方的含义,我们可以把它想成两个人同时操作,最后得到相同序列的情况 然后就比较简单了,设f[t][i][j]为放了t个珠子,A的上方管道到了第i颗珠子,B的上方管道到了第j颗 ...
- bzoj 1566: [NOI2009]管道取珠
Description Input 第一行包含两个整数n, m,分别表示上下两个管道中球的数目. 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型.其中A表示浅色球,B表示深色球. ...
- 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MBSubmit: 1659 Solved: 971 Description In ...
- 1566: [NOI2009]管道取珠 - BZOJ
Description Input第一行包含两个整数n, m,分别表示上下两个管道中球的数目. 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型.其中A表示浅色球,B表示深色球. 第三行 ...
- 【BZOJ】1566: [NOI2009]管道取珠
题解 假如我们非常熟练的看出来,平方和转有序对统计的套路的话,应该就不难了 我们只需要统计(wayA,wayB)生成的序列一样的有序对个数就行 可以用一个\(n^3\)的dp解决 \(dp[i][j] ...
- bzoj1566: [NOI2009]管道取珠 DP
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1566 思路 n个球,第i个球颜色为ai,对于颜色j,对答案的贡献为颜色为j的球的个数的平 ...
- [NOI2009]管道取珠 DP + 递推
---题面--- 思路: 主要难点在思路的转化, 不能看见要求$\sum{a[i]^2}$就想着求a[i], 我们可以对其进行某种意义上的拆分,即a[i]实际上可以代表什么? 假设我们现在有两种取出某 ...
- bzoj1566 [NOI2009]管道取珠——DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1566 一眼看上去很懵... 但是答案可以转化成有两个人在同时取珠子,他们取出来一样的方案数: ...
随机推荐
- Hi3531a海思logo加载的实现流程
海思篇之开机logo的加载(Hi3531a命令版) 2019-02-02 11:31:51 Wilburn0 阅读数 479更多 分类专栏: 海思开发 版权声明:本文为博主原创文章,遵循CC 4. ...
- yum更换源配置
今天安装mysql5.7的时候出现了点问题,最后更换yum源解决了,把这个记录一下 yum源配置(阿里云源) 1) 安装wget yum install -y wget 2) 备份/etc/yum.r ...
- 在论坛中出现的比较难的sql问题:18(字符合并 整数解析星期几)
原文:在论坛中出现的比较难的sql问题:18(字符合并 整数解析星期几) 最近,在论坛中,遇到了不少比较难的sql问题,虽然自己都能解决,但发现过几天后,就记不起来了,也忘记解决的方法了. 所以,觉得 ...
- 发布后的项目打开swagger
使用netcore作为纯后端提供api已经变得越来越频繁,swagger也成为很多人的选择.通常会在代码中限制ASPNETCORE_ENVIRONMENT为Production时关闭swagger.但 ...
- javascript 之 扩展对象 Object.assing
语法:Object.assign(target,...source) 说明:Object.assign方法的第一个参数是目标对象,后面的参数都是源对象 一.以对象为参数的合并 1.第一个参数都是对象, ...
- SQL Server存储过程中变量使用函数调用变量
USE DB名称GO SET ANSI_NULLS ONGOSET QUOTED_IDENTIFIER ONGO . CREATE PROCEDURE 存储过程名 @formID n ...
- 错误 4 error C2039: “Sleep”: 不是“boost::this_thread”的成员
检查是否是在x64下运行的. #include <pcl/io/openni2_grabber.h> #include <pcl/visualization/cloud_viewer ...
- 采用localStorage做定时缓存
背景 页面采用ajax获取数据时,每访问一次就会发送一次请求向服务端获取数据,可是呢. 有些数据更新的又不频繁,所以我就想着使用localStorage进行本地存储,然后在固定间隔时在去更新数据.(下 ...
- pyhton中map和reduce
from functools import reduce import numpy as np ''' reduce[function, sequence[, initial]]使用 1.functi ...
- 3.Git 命令行操作
1.Git 命令行操作(本地库操作): 1.1. 创建本地库(本地库初始化): 第一步:首先在D盘建了个名为git空文件夹,命令行中cd到这个文件夹: 第二步:通过git init命令把这个目录变成G ...