hdu6568 Math (概率dp)
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=6568
题意:
在$0$到$L$的坐标轴运输货物,在每个整数点可能丢失货物,丢失概率为$p$,丢失后可能发现丢失,发现概率为$q$
在$L$点如果没携带货物一定会发现,求到达$L$的期望路程
数据范围:
$1\leq L\leq 100000$
$0< p,q< 1$
分析:
定义$dp[i]$为在$i$点丢失货物后回到$i$点的期望路程
$dp[L]=0$
$dp[i]=(1-q)\times (dp[i+1]+2)$
i-1到i的花费为$x=(1-p)+p\times(dp[i-1]+x)$
解出$x$即可
ac代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn = 1e5 + 5;
double p,q;//丢失和丢失后发现的概率
double dp[maxn];//在i点丢失后回到i点的期望路程
int main()
{
int L;
while(scanf("%d %lf %lf",&L,&p,&q)==3){
dp[L]=0;
for(int i=L-1;i>=0;i--)
dp[i]=(1-q)*(dp[i+1]+2.0);
double ans=0;
for(int i=1;i<=L;i++)//i-1到i的花费为x=(1-p)+p*(dp[i-1]+x)
ans+=((1-p)+dp[i-1]*p)/(1-p);
printf("%.12f\n",ans);
}
return 0;
}
hdu6568 Math (概率dp)的更多相关文章
- 概率DP light oj 1030
t组数据 n块黄金 到这里就捡起来 出发点1 到n结束 点+位置>n 重掷一次 dp[i] 代表到这里的概率 dp[i]=(dp[i-1]+dp[i-2]... )/6 如果满6个的话 否则 ...
- 概率dp入门
概率DP主要用于求解期望.概率等题目. 转移方程有时候比较灵活. 一般求概率是正推,求期望是逆推.通过题目可以体会到这点. poj2096:Collecting Bugs #include <i ...
- HDU 4089 Activation(概率DP)(转)
11年北京现场赛的题目.概率DP. 公式化简起来比较困难....而且就算结果做出来了,没有考虑特殊情况照样会WA到死的.... 去参加区域赛一定要考虑到各种情况. 像概率dp,公式推出来就很容易写 ...
- ZOJ3582:Back to the Past(概率DP)
Recently poet Mr. po encountered a serious problem, rumor said some of his early poems are written b ...
- sgu495:概率dp / 推公式
概率题..可以dp也可以推公式 抽象出来的题目大意: 有 n个小球,有放回的取m次 问 被取出来过的小球的个数的期望 dp维护两个状态 第 i 次取出的是 没有被取出来过的小球的 概率dp[i] 和 ...
- hdu 4405 Aeroplane chess (概率DP)
Aeroplane chess Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4865 Peter's Hobby(2014 多校联合第一场 E)(概率dp)
题意:已知昨天天气与今天天气状况的概率关系(wePro),和今天天气状态和叶子湿度的概率关系(lePro)第一天为sunny 概率为 0.63,cloudy 概率 0.17,rainny 概率 0.2 ...
- HDU 3853 期望概率DP
期望概率DP简单题 从[1,1]点走到[r,c]点,每走一步的代价为2 给出每一个点走相邻位置的概率,共3中方向,不动: [x,y]->[x][y]=p[x][y][0] , 右移:[x][y ...
- 概率dp专辑
求概率 uva11021 http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
- UVALive 6672 Bonus Cards 概率dp
题意呢 就是有两种售票方式 一种是icpc 一种是其他方式 icpc抢票成功的概率是其他方式的2倍…… 这时 一个人出现了 他通过内幕知道了两种抢票方式各有多少人 他想知道自己如果用icpc抢票成功的 ...
随机推荐
- Django模型(model)系统
Object Relational Mapping(ORM) ORM介绍 ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据 ...
- 初学java2 认识面向对象 以及运算符 输入输出
面向对象 面向对象是一种程序设计思路,在设计一个程序时不需要考虑内部如何实现,只需要想他要实现什么功能 就像在餐馆点菜一样,你不需要知道他应该怎么做,你只需要决定你要吃什么 面向对象三大特征 继承 封 ...
- java八大排序代码
import java.util.ArrayList;import java.util.List; public class FastSort { public static void main(St ...
- empty和isset的区别
1.empty 判断一个变量是否为空 null.false.0.0.0.’0′.array() .' '.var $a 都会返回true. 2.isset 判断一个变量是否设置 0.00.’0′. ...
- 解决 VS Code「Code Runner」插件运行 python 时的中文乱码问题
描述 这里整理了两种 VS Code「Code Runner」插件运行 python 时乱码的解决方案.至于设置「Auto Guess Encoding」为 true 的操作这里就不多描述了. 乱码截 ...
- 系统性能分析-vmstat命令详解
最近温馨巩固Linux 操作系统的 vmstat命令,这个命令所能打印的系统信息满多的,比较好用,就顺当记录下重要的点,方便以后排查系统问题时拿出来用 字段 含义 procs 进程信息字段: -r:正 ...
- Asp .Net Core 2.0 登录授权以及前后台多用户登录
用户登录是一个非常常见的应用场景 .net core 2.0 的登录方式发生了点变化,应该是属于是良性的变化,变得更方便,更容易扩展. 配置 打开项目中的Startup.cs文件,找到Configur ...
- IPhone中H5页面用on绑定click无效的解决方法
首先声明本人资质尚浅,本文只用于个人总结.如有错误,欢迎指正.共同提高. --------------------------------------------------------------- ...
- 【Mac】 开启原生的 NTFS 硬盘格式支持
一.MacOS 10.13 之前 二.MacOS 10.13 及之后 一.MacOS 10.13 之前 直接跳到引用地址查看,下面的草记只是为了防止链接丢失 引用地址 打开终端 切换至root身份,输 ...
- 【2017-06-16】Jquery获取dropdownlist选中的内容
var Text = $("#DropDownList1 option:selected").text(); 注意:DropDownList1和option之间有个空格!!!