题目链接:https://vjudge.net/problem/POJ-2152

题意:给定一颗大小为n的树,在每个结点建消防站花费为w[i],如果某结点没有消防站,只要在它距离<=d[i]的结点有消防站即可,求最小花费。

思路:

  好难的树形dp,一点思绪也木有,只能搜题解。

  用dp[u][i]表示以u为根的子树满足条件,并且结点u依赖于结点i的最小花费。用best[u]表示以u根的子树满足条件的最小花费,那么best[u]=min(dp[u][i])。

  求best[u]时,先跑一遍dfs得到所有结点距离u的距离dis[i]。如果dis[i]>d[u],那么u没法依赖i,此时dp[u][i]=inf。否则dis[i]<=d[u],此时dp[u][i]=w[i]+sum( min( best[v] , dp[v][i]-w[i] ) ),其中i从1遍历到n,v是u的子结点。因为v的依赖有两种情况,如果v依赖于以v为根的子树中的结点,即best[v]; 如果v依赖于其余的结点,那么一定是i。反证一下,如果v依赖于k,那么u也一定依赖于k。所以应取best[v]和dp[v][i]-w[i]的最小值,减w[i]是因为w[i]多加了一次。

AC代码:

#include<cstdio>
#include<algorithm>
using namespace std; const int maxn=1e3+;
const int inf=0x3f3f3f3f;
int T,n,cnt,head[maxn],w[maxn],d[maxn],dp[maxn][maxn],dis[maxn];
int best[maxn]; struct node{
int v,w,nex;
}edge[maxn<<]; void adde(int u,int v,int w){
edge[++cnt].v=v;
edge[cnt].w=w;
edge[cnt].nex=head[u];
head[u]=cnt;
} void getdis(int u,int fa,int len){
dis[u]=len;
for(int i=head[u];i;i=edge[i].nex){
int v=edge[i].v;
if(v==fa) continue;
getdis(v,u,len+edge[i].w);
}
} void dfs(int u,int fa){
for(int i=head[u];i;i=edge[i].nex){
int v=edge[i].v;
if(v==fa) continue;
dfs(v,u);
}
getdis(u,,);
best[u]=inf;
for(int i=;i<=n;++i){
if(dis[i]>d[u]) dp[u][i]=inf;
else{
dp[u][i]=w[i];
for(int j=head[u];j;j=edge[j].nex){
int v=edge[j].v;
if(v==fa) continue;
dp[u][i]+=min(best[v],dp[v][i]-w[i]);
}
}
best[u]=min(best[u],dp[u][i]);
}
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d",&n);
cnt=;
for(int i=;i<=n;++i)
head[i]=;
for(int i=;i<=n;++i)
scanf("%d",&w[i]);
for(int i=;i<=n;++i)
scanf("%d",&d[i]);
for(int i=;i<n;++i){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
adde(u,v,w);
adde(v,u,w);
}
dfs(,);
printf("%d\n",best[]);
}
return ;
}

poj2152 Fire(树形DP)的更多相关文章

  1. POJ2152 Fire (树形DP)

    题意:n个城市n-1条边 组成一棵树 在每个城市修建消防站会有一个花费costi 每个城市能防火当且仅当地图上距离他最近的消防站距离小于di   问如何修建消防站 使地图上所有的城市都有预防火灾的能力 ...

  2. [poj2152]fire_树形dp

    fire poj-2152 题目大意:给出一颗树,给出两个相邻节点的距离,以及每个节点的接受范围,还有当前节点的代价.我们想要求出覆盖整个图的最小代价. 注释:一个点被覆盖,当且仅当该点有防火站或者这 ...

  3. POJ 2152 Fire(树形DP)

    题意: 思路:令F[i][j]表示 的最小费用.Best[i]表示以i为根节点的子树多有节点都找到负责消防站的最小费用. 好难的题... #include<algorithm> #incl ...

  4. Fire (poj 2152 树形dp)

    Fire (poj 2152 树形dp) 给定一棵n个结点的树(1<n<=1000).现在要选择某些点,使得整棵树都被覆盖到.当选择第i个点的时候,可以覆盖和它距离在d[i]之内的结点,同 ...

  5. POJ 2152 Fire (树形DP,经典)

    题意:给定一棵n个节点的树,要在某些点上建设消防站,使得所有点都能够通过某个消防站解决消防问题,但是每个点的建站费用不同,能够保证该点安全的消防站的距离上限也不同.给定每个点的建站费用以及最远的消防站 ...

  6. 树形 DP 总结

    树形 DP 总结 本文转自:http://blog.csdn.net/angon823/article/details/52334548 介绍 1.什么是树型动态规划 顾名思义,树型动态规划就是在“树 ...

  7. 【转】【DP_树形DP专辑】【9月9最新更新】【from zeroclock's blog】

    树,一种十分优美的数据结构,因为它本身就具有的递归性,所以它和子树见能相互传递很多信息,还因为它作为被限制的图在上面可进行的操作更多,所以各种用于不同地方的树都出现了,二叉树.三叉树.静态搜索树.AV ...

  8. 【DP_树形DP专题】题单总结

    转载自 http://blog.csdn.net/woshi250hua/article/details/7644959#t2 题单:http://vjudge.net/contest/123963# ...

  9. 树形dp总结

    转自 http://blog.csdn.net/angon823 介绍 1.什么是树型动态规划 顾名思义,树型动态规划就是在"树"的数据结构上的动态规划,平时作的动态规划都是线性的 ...

随机推荐

  1. Luogu P1066 2^k进制数 组合数学

    分两种情况:$k|n$和$k$不整除$n$ 如果$k|n$,那么长度为$n$的二进制数就能被恰好分成$n/k$个块:所以若某个数长度是$x$个块,由于每个块内能填不同的$2^k-1$个数,那么就有$C ...

  2. PHP mysqli_fetch_array() 函数

    从结果集中取得一行作为数字数组或关联数组: <?php // 假定数据库用户名:root,密码:123456,数据库:RUNOOB $con=mysqli_connect("local ...

  3. Can't load Microsoft.ReportViewer.ProcessingObjectModel.dll

    本机的时候是能正常看到report,但deploy到别的机器上却不行,按说从本机拷个dll过去就可以,但怎么也找不到. 原来要在cmd那里输入C:\WINDOWS\assembly\GAC_MSIL ...

  4. C++中时间转换

    所需头文件 #include <chrono> #include <time.h> auto now = std::chrono::system_clock::now(); s ...

  5. Mybatis源码学习之类型转换(四)

    简述 JDBC数据类型与Java语言中的数据类型并不是完全对应的,所以在PreparedStatement为SQL语句绑定参数时,需要从Java类型转换成JDBC类型,而从结果集中获取数据时,则需要从 ...

  6. 使用 suspend 和 resume 暂停和恢复线程

    suspend 和 resume 的使用 在 Thread 类中有这样两个方法:suspend 和 resume,这两个方法是成对出现的. suspend() 方法的作用是将一个线程挂起(暂停), r ...

  7. Leetcode题目169.求众数(简单)

    题目描述: 给定一个大小为 n 的数组,找到其中的众数.众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素. 你可以假设数组是非空的,并且给定的数组总是存在众数. 示例 1: 输入: [3,2,3] ...

  8. APScheduler 3.0.1浅析

    简介 APScheduler是一个小巧而强大的Python类库,通过它你可以实现类似Unix系统cronjob类似的定时任务系统.使用之余,阅读一下源码,一方面有助于更好的使用它,另一方面,个人认为a ...

  9. 前端知识点回顾之重点篇——CSS中vertical align属性

    来源:https://www.cnblogs.com/shuiyi/p/5597187.html 行框的概念 红色(line-height)为行框的顶部和底部,绿色(font-size)为字体的高度, ...

  10. 使用KerasNet

    1.安装Python3.6,必须是3.6因为当前KerasNet的配套版本是3.6 https://www.python.org/ftp/python/3.6.8/python-3.6.8-amd64 ...