又咕咕了几天\(QwQ\)


思路:二分+树上差分

提交:\(\geq5\)次

错因:\(lca\)写错+卡了很久常数(哪位大佬帮我康康,有更好的写法请指出\(QwQ\))

题解:

我们先将原问题转化为\(log_2n\)个判定问题;

如何\(ck(x)\):把所有\(>x\)的路径在树上标记(边差分),然后找到被所有\(>x\)路径覆盖的点(边转点,边权下放点权),尝试把这个点的权值改为零,检查最长路径的时间是否\(\leq x\).

若存在这样的点,\(return\ true\),否则\(return\ false\).

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#define ull unsigned long long
#define ll long long
#define R register int
using namespace std;
#define pause (for(R i=1;i<=10000000000;++i))
#define In freopen("NOIPAK++.in","r",stdin)
#define Out freopen("out.out","w",stdout)
namespace Fread {
static char B[1<<15],*S=B,*D=B;
#ifndef JACK
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
#endif
inline int g() {
R ret=0,fix=1; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-1:fix;
if(ch==EOF) return EOF; do ret=ret*10+(ch^48); while(isdigit(ch=getchar())); return ret*fix;
} inline bool isempty(const char& ch) {return (ch<=36||ch>=127);}
inline void gs(char* s) {
register char ch; while(isempty(ch=getchar()));
do *s++=ch; while(!isempty(ch=getchar()));
}
} using Fread::g; using Fread::gs;
namespace Luitaryi {
const int N=300010;
struct edge {
int u,v,w;
}e[N];
int n,m,cnt,mx;
int vr[N<<1],nxt[N<<1],w[N<<1],W[N],fir[N],d[N],dis[N],f[N][20],c[N],s[N],lg[N];
inline void add(int u,int v,int ww) {vr[++cnt]=v,w[cnt]=ww,nxt[cnt]=fir[u],fir[u]=cnt;}
inline void dfs(int u) {
for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
if(d[v]) continue; W[v]=w[i];
f[v][0]=u; R p=u; d[v]=d[u]+1; dis[v]=dis[u]+w[i];
for(R j=0;f[p][j];++j) f[v][j+1]=f[p][j],p=f[p][j];
dfs(v);
}
}
inline int lca(int u,int v) {
if(d[u]<d[v]) swap(u,v); R lim=log2(d[u])+1;
for(R i=lim;~i;--i) if(d[f[u][i]]>=d[v]) u=f[u][i];
if(u==v) return u;
for(R i=lim;~i;--i) if(f[u][i]!=f[v][i]) u=f[u][i],v=f[v][i];
return f[u][0];
}
inline bool ck(int x) { R tot=0;
memset(c,0,sizeof(c));
for(R i=1;i<=m;++i) if(e[i].w>x)
++tot,++c[e[i].u],++c[e[i].v],c[lca(e[i].u,e[i].v)]-=2;
for(R i=1;i<=n;++i) c[f[s[i]][0]]+=c[s[i]];
for(R i=n;i>=1;--i) if(tot==c[i]&&mx-W[i]<=x) return true;
return false;
}
inline bool cmp(const int& a,const int& b) {return d[a]>d[b];}
inline void main() {
n=g(),m=g();
for(R i=1,u,v,w;i<n;++i)
u=g(),v=g(),w=g(),add(u,v,w),add(v,u,w);
d[1]=1; dfs(1);
for(R i=1;i<=n;++i) s[i]=i; sort(s+1,s+n+1,cmp);
for(R i=1;i<=m;++i) {
e[i].u=g(),e[i].v=g();
e[i].w=dis[e[i].u]+dis[e[i].v]-2*dis[lca(e[i].u,e[i].v)];
mx=max(mx,e[i].w);
} R l=0,r=mx+1;
while(l<r) {
R md=l+r>>1;
if(ck(md)) r=md;
else l=md+1;
} printf("%d\n",l);
}
}
signed main() {
Luitaryi::main();
return 0;
}

2019.07.25

P2680 运输计划 二分+树上差分的更多相关文章

  1. 洛谷 P2680 运输计划-二分+树上差分(边权覆盖)

    P2680 运输计划 题目背景 公元 20442044 年,人类进入了宇宙纪元. 题目描述 公元20442044 年,人类进入了宇宙纪元. L 国有 nn 个星球,还有 n-1n−1 条双向航道,每条 ...

  2. Luogu P2680 运输计划(二分+树上差分)

    P2680 运输计划 题意 题目背景 公元\(2044\)年,人类进入了宇宙纪元. 题目描述 公元\(2044\)年,人类进入了宇宙纪元. \(L\)国有\(n\)个星球,还有\(n-1\)条双向航道 ...

  3. 洛谷P2680 运输计划(树上差分+二分)

    传送门 考虑树上乱搞 首先这是满足二分性质的,如果在某个时间可以完成工作那么比他更长的时间肯定也能完成工作 然后考虑二分,设当前答案为$mid$,如果有一条链的长度大于$mid$,那么这条链上必须得删 ...

  4. BZOJ 4326 NOIP2015 运输计划 (二分+树上差分)

    4326: NOIP2015 运输计划 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 1930  Solved: 1231[Submit][Statu ...

  5. NOIP2015Day2T3运输计划(二分+树上差分)

    做了这么多NOIPTG的题,这是唯一 一道一眼秒的T3(有时候T2还不会做QAQ)... 题目大意就不说了QWQ 思路大概是:啊最大值最小化,来个二分.检验mid的话,显然就是用最长路径减去所有边权& ...

  6. 【Luogu】P2680运输计划(树上差分+二分)

    题目链接 总体思路……怎么说呢……是个暴力吧…… 首先用倍增预处理出每条路径的长度. 然后按长度把路径排序. 然后二分答案.对于当前答案mid检验,怎么检验呢? 首先差分把所有长度比mid大的链上除了 ...

  7. [luogu]P2680 运输计划[二分答案][树上差分]

    [luogu]P2680 [NOIP2015]运输计划 题目背景 公元 2044 年,人类进入了宇宙纪元. 题目描述 L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n ...

  8. P2680 运输计划[二分+LCA+树上差分]

    题目描述 公元20442044 年,人类进入了宇宙纪元. L 国有 nn 个星球,还有 n-1n−1 条双向航道,每条航道建立在两个星球之间,这 n-1n−1 条航道连通了 LL 国的所有星球. 小 ...

  9. luogu P2680 运输计划 (二分答案+树上差分)

    题目背景 公元 20442044 年,人类进入了宇宙纪元. 题目描述 公元20442044 年,人类进入了宇宙纪元. L 国有 nn 个星球,还有 n-1n−1 条双向航道,每条航道建立在两个星球之间 ...

随机推荐

  1. 数据类型 _python

    字符串 str # a ="asd bfg" # print(a.capitalize()) #首字母大写 # print(a.title()) #每个单词首字母大写 # prin ...

  2. 关于typecho发布文章后的错位

    今天发布了一篇文章,发布后发现,what?主页错位了,安装控制变量法知道,肯定是这篇文章有什么不可告人的秘密. 所以,顺便使用一下二分法查找一下为啥,最后找到是因为使用了---------->( ...

  3. Fabric中的节点类型

    在Fabric中,尽管所有对等节点/peer都是相同的,但它们可以根据网络的配置方式承担多个角色:(①②是主要的节点类型) ①提交节点: 通道中的每个对等节点都是一个提交节点.它们接收生成的交易区块, ...

  4. const函数返回自身的引用也是常量引用

    const函数返回自身的引用也是const 解决:根据对象是否为consr重载

  5. 点标记(lambda表达式+linq查询标记符)与linq语句(查询表达式)

    什么是Linq表达式?什么是Lambda表达式? 参照:https://www.cnblogs.com/zhaopei/p/5746414.html

  6. Google Drive ubuntu

    Google尚未发布用于从Ubuntu访问其drive的官方Linux客户端.然开源社区却业已开发完毕非官方之软件包‘grive-tools’. grive乃是Google Drive(在线存储服务) ...

  7. JS基础_构造函数

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. ZROI17普及23-A.如烟题解--技巧枚举

    题目链接 因版权原因不予提供 分析 别看这是普及模拟赛,其实基本上是提高难度...像这题做NOIpT1的话也说的过去 有个很显然的暴力思路就是枚举c,a,b,时间复杂度\(O(N^3)\), 然后正解 ...

  9. Win10安装PyQt5与Qt Designer

    1.直接在cmd中通过pip安装PyQt5 1 pip install pyqt5 会自动下载PyQt5以及sip并安装,因为PyQt5不再提供Qt Designer等工具,所以需要再安装pyqt5- ...

  10. pymsql及事务

    MySQL知识点补充 1.去重 distinct select distinct name,age from t1; # 针对查找出来的结果整行(记录)进行去重,也就是相同行只保存一个 注意点:dis ...