思路:杜教筛

提交:\(2\)次

错因:\(\varphi(i)\)的前缀和用\(int\)存的

题解:

对于一类筛积性函数前缀和的问题,杜教筛可以以低于线性的时间复杂度来解决问题。

先要构造\(h=f*g\),并且\(h\)的前缀和易求,\(g\)的区间和易求。

具体地:

\[\sum_{i=1}^{n}h(i)=\sum_{i=1}^{n}\sum_{d|i}g(d)\cdot f(\frac{i}{d})$$ $$\sum_{i=1}^{n}h(i)=\sum_{d=1}^{n}g(d)\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}f({i})
\]

设\(S(n)\)表示\(\sum_{i=1}^{n}f(i)\)

\[\sum_{i=1}^{n}h(i)=\sum_{d=1}^{n}g(d)\cdot S(\lfloor\frac{n}{d}\rfloor)
\]

\[g(1)\cdot S(n)=\sum_{i=1}^{n}h(i)-\sum_{d=2}^{n}g(d)\cdot S(\lfloor\frac{n}{d}\rfloor)
\]

当我们对后面的式子进行整除分块时,求\(S(n)\)的复杂度为\(O(n^{\frac{2}{3}})\)

所以主要就是如何构造\(h\)和\(g\)

好吧直接说了:

\(\epsilon=\mu\cdot I\)

\(id=\varphi\cdot I\)



对于\(f(n)=\varphi(n)\cdot n^k=\varphi(n^{k+1})\)的一类方法:

\(id^{k+1}=f\cdot id^k\)

#include<cstdio>
#include<iostream>
#include<unordered_map>
#include<cmath>
#define ll long long
#define R register int
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0; register I f=1;
register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} const int N=5000000,Inf=2147483647;
int T,n,cnt,p[N/4],mu[N+10];
ll phi[N+10];
bool v[N+10];
inline void PRE() { phi[1]=mu[1]=1;
for(R i=2;i<=N;++i) {
if(!v[i]) p[++cnt]=i,phi[i]=i-1,mu[i]=-1;
for(R j=1;j<=cnt&&i*p[j]<=N;++j) {
v[i*p[j]]=true;
if(i%p[j]==0) {
mu[i*p[j]]=0;
phi[i*p[j]]=phi[i]*p[j]; break;
} mu[i*p[j]]=-mu[i];
phi[i*p[j]]=phi[i]*(p[j]-1);
}
}
for(R i=1;i<=N;++i) mu[i]+=mu[i-1];
for(R i=1;i<=N;++i) phi[i]+=phi[i-1];
}
unordered_map<int,int> memmu;
unordered_map<int,ll> memphi;
inline ll s_phi(int n) {
if(n<=N) return phi[n];
if(memphi.count(n)) return memphi[n];
register ll ans=0;
for(R l=2,r;r<Inf&&l<=n;l=r+1) {
r=n/(n/l),ans+=(r-l+1)*s_phi(n/l);
} return memphi[n]=1llu*n*(n+1ll)/2ll-ans;
}
inline int s_mu(int n) {
if(n<=N) return mu[n];
if(memmu.count(n)) return memmu[n];
register ll ans=0;
for(R l=2,r;r<Inf&&l<=n;l=r+1) {
r=n/(n/l),ans+=(r-l+1)*s_mu(n/l);
} return memmu[n]=1ll-ans;
}
inline void main() {
PRE(); g(T); while(T--) {
g(n); printf("%lld %d\n",s_phi(n),s_mu(n));
}
}
} signed main() {Luitaryi::main(); return 0;}

2019.08.23

77

P4213【模板】杜教筛(Sum)的更多相关文章

  1. p4213 【模板】杜教筛(Sum)

    传送门 分析 我们知道 $\varphi * 1 = id$ $\mu * 1 = e$ 杜教筛即可 代码 #include<iostream> #include<cstdio> ...

  2. [模板] 杜教筛 && bzoj3944-Sum

    杜教筛 浅谈一类积性函数的前缀和 - skywalkert's space - CSDN博客 杜教筛可以在\(O(n^{\frac 23})\)的时间复杂度内利用卷积求出一些积性函数的前缀和. 算法 ...

  3. luoguP4213 [模板]杜教筛

    https://www.luogu.org/problemnew/show/P4213 同 bzoj3944 考虑用杜教筛求出莫比乌斯函数前缀和,第二问随便过,第一问用莫比乌斯反演来做,中间的整除分块 ...

  4. 洛谷P4213(杜教筛)

    #include <bits/stdc++.h> using namespace std; typedef long long LL; const int maxn = 3e6 + 3; ...

  5. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  6. 51NOD 1222 最小公倍数计数 [莫比乌斯反演 杜教筛]

    1222 最小公倍数计数 题意:求有多少数对\((a,b):a<b\)满足\(lcm(a,b) \in [1, n]\) \(n \le 10^{11}\) 卡内存! 枚举\(gcd, \fra ...

  7. [洛谷P4213]【模板】杜教筛(Sum)

    题目大意:给你$n$,求:$$\sum\limits_{i=1}^n\varphi(i),\sum\limits_{i=1}^n\mu(i)$$最多$10$组数据,$n\leqslant2^{31}- ...

  8. P4213 【模板】杜教筛(Sum)

    \(\color{#0066ff}{题 目 描 述}\) 给定一个正整数\(N(N\le2^{31}-1)\) 求 \(\begin{aligned} ans_1=\sum_{i=1}^n\varph ...

  9. BZOJ3944: Sum(杜教筛模板)

    BZOJ3944: Sum(杜教筛模板) 题面描述 传送门 题目分析 求\(\sum_{i=1}^{n}\mu(i)\)和\(\sum_{i=1}^{n}\varphi(i)\) 数据范围线性不可做. ...

随机推荐

  1. LeetCode. 阶乘后的零

    题目要求: 给定一个整数 n,返回 n! 结果尾数中零的数量. 示例: 输入: 3 输出: 0 解释: 3! = 6, 尾数中没有零. 解法: class Solution { public: int ...

  2. Xpath解析

    import requests from lxml import etree url = 'https://www.huawei.com/cn/?ic_medium=direct&ic_sou ...

  3. 如何在 arm 官网上找到合适的手册

    http://infocenter.arm.com/help/advanced/help.jsp 在这里输入合适的版号即可 这样就可以不用去 CSDN 了 100000_0000_00_EN - AR ...

  4. hdu 1698 线段数的区间更新 以及延迟更新

    先说说区间更新和单点更新的区别 主要的区别是搜索的过程 前者需要确定一个区间 后者就是一个点就好了 贴上两者代码 void updata(int i)//单点更新 { int l=stu[i].l; ...

  5. (九)mybatis之延迟加载

    一.为什么要使用延迟加载? 使用延迟加载的意义 在进行数据查询时,为了提高数据库查询性能,尽量使用单表查询,因为单表查询比多表关联查询速度快. 如果查询单表就可以满足需求,一开始先查询单表,当需要关联 ...

  6. (十一)SpringBoot之文件上传以及

    一.案例 1.1 配置application.properties #主配置文件,配置了这个会优先读取里面的属性覆盖主配置文件的属性 spring.profiles.active=dev server ...

  7. 加密算法 MD5 和 SHA 的 JAVA 实现

    首先先简单的介绍一下MD5 和 SHA 算法 然后看一下在  java.security.MessageDigest   (信息摘要包下) 如何分别实现  md5 加密 和 sha 加密 最后在看一下 ...

  8. 验证 vector = 是深拷贝还是浅拷贝

    #include <vector> using namespace std; int main() { int w=1920; int h = 1080; vector<int> ...

  9. UITableView个人使用总结【前篇-增量加载】

    UITableView现在边整边总结. 预计分两个部分,第一个部分主要是对UITableView本身属性的学习.第二个部分可能会是加上一个编辑按钮以及对列表的操作. 今天先学习第一部分. 第一部分,我 ...

  10. echart 不同颜色(柱状图)

    var option = { tooltip: { trigger: 'axis' }, grid: { left: '3%', right: '4%', bottom: '3%', containL ...