壹 ❀ 引

一个思路搞定三道Promise并发编程题,手摸手教你实现一个Promise限制器一文中,我们在文章结尾留了一个疑问,关于第三题的实现能否解决当每次调用时间都不相等的情况(比如第二次调用要早于第一次调用结束),那么最终得到的结果顺序还能与参数顺序保持一致问题?在分享我踩坑过程中其实已经证明是可以满足这种场景的,但为什么呢?

我们可以尝试运行下面代码,你会发现尽管输出顺序不对,但每次indexvalue都是正确的配队关系:

const time = [1, 3, 4, 2, 1];
// 假设请求API为
function request(params) {
return new Promise((resolve, reject) => {
setTimeout(() => resolve(params), time[Math.floor(Math.random() * 5)] * 1000);
});
} // 最多处理3个请求的调度器
function Scheduler(list = [], limit = 3) {
let count = 0;
// 用于统计成功的次数
let resLength = 0;
// 浅拷贝一份,原数据的length我们还有用
const pending = [...list];
const resList = []; // 一定得返回一个promise
return new Promise((resolve, reject) => {
const run = () => {
if (!pending.length || count >= limit) return;
count++;
const index = list.length - pending.length;
const params = pending.shift(); request(params)
.then((res) => {
console.log('当前index为:', index, '当前结果为:', res);
count--;
resLength++;
// 按index来保存结果
resList[index] = res;
// 全部成功了吗?没有就继续请求,否则resolve(resList)跳出递归;
resLength === list.length ? resolve(resList) : run();
})
.catch(reject) // 有一个失败就直接失败
}; // 遍历,模拟前两次依次调用的动作,然后在run内部控制如何执行
list.forEach(() => run());
})
} Scheduler([1, 2, 3, 4, 5]).then((res) => console.log('最终结果为:', res)); // 1 2 3 4 5

可以毫不夸张的说,上述代码已经算是一个满足了并发限制器功能的Promise.all了,只要我们去除掉限制部分代码,稍加修改就能分别得到Promise.allPromise.race的实现,但在改写之前我们还是先解释为什么尽管执行顺序不同,为什么结果与参数仍是对应关系的问题,而且我觉得也只剩下这一个稍微有点饶的疑惑点了。

贰 ❀ 执行上下文与闭包

还是模拟下上述代码的执行过程,当forEach遍历调用run时,可以确定的是,如下代码绝对是同步执行完成的,且5次都是同步跑完:

// 获得当前的index
const index = list.length - pending.length;
// 获取当前请求需要的参数
const params = pending.shift();

异步的是request(),你什么时候能执行我不关系,反正一开始我已经把你执行需要的参数成对的给你准备好了。有同学的疑问可能就在于,我也知道这些参数一开始是成对的,那Promise执行顺序被打乱之后,后执行的Promise又怎么知道之前的index是多少呢,这是怎么对应上的?

问题又回到了老生常谈的执行上下文与闭包问题。我们知道代码在执行前都要经历执行上下文创建阶段与执行阶段,而一个函数的执行上下文在它创建时就已经决定了,而不是执行时,这也是典型的静态作用域的概念,比如:

const a = 1;
const fn = () => {
console.log(a);
};
(() => {
const a = 2;
fn();// ???
})();

以上代码fn执行时输出1,这是因为fn的执行上下文在创建时决定,而不是执行时,所以不管你在哪调用它,它能访问的永远是同出一个作用域下的const a = 1,这里就当简单复习下静态作用域的概念。

回到上文我们实现的代码,我们知道request().then()这个调用行为是同步的,异步的是requset内部修改状态的代码,以及状态修改完成后才能执行的.then()所注册的回调函数,注意.then()注册回调的行为是同步的,这一点你一定要搞清楚。

也就是说,在五次同步的run()调用过程中,indexparams在不断的同步生成,.then()也在不断的同步注册回调任务。

还记得javascript中什么是闭包吗?所谓闭包,就是能访问外部函数作用域中自由变量的函数,而此时外部函数很明显就是new Promise(fn)fn,内部函数就是.then()注册的回调函数,自由变量自然就是上面同步生成的index了,而闭包的一大特性就是,即便外部上下文已经销毁,它依旧能访问到当时创建它的执行上下文,以及上下文中的那些自由变量(静态作用域的魅力)。

因此即便run()在不断的执行与销毁,.then()在注册callback时这些回调已经自带了它们后续要执行的上下文,这就像人能在地球生活,是因为地球这个上下文提供了空气,水等物质,而宇航员离开了地球依旧能生存,是因为他们自带了氧气等生活物质,即使他们已不在地球这个上下文了。

假设我们断点查看任意一个Promise执行,你会发现每次执行时都有一个closure作用域,这就是闭包的英文单词:

若你对闭包以及执行上下文有一定疑惑,可以阅读博主这两篇文章:

一篇文章看懂JS闭包,都要2020年了,你怎么能还不懂闭包?

一篇文章看懂JS执行上下文

叁 ❀ 改写实现Promise.all

好了,解释完结果与参数的对应关系后,我们直接改写上述代码,得到我们的PromiseAll,它满足2个特性:

  • 只有所有Promise全部resolve时才会resolve,且结果顺序与参数保持一致。
  • 任意一个失败时直接reject
function PromiseAll(promiseList = []) {
// 用于统计成功的次数
let resLength = 0;
// 浅拷贝一份,原数据的length我们还有用
const pending = [...promiseList];
const resList = []; // 一定得返回一个promise
return new Promise((resolve, reject) => {
const run = () => {
if (!pending.length) return;
const index = promiseList.length - pending.length;
const promise = pending.shift(); promise.then((res) => {
resLength++;
// 按index来保存结果
resList[index] = res;
// 全部成功了吗?没有就继续请求,否则resolve(resList)跳出递归;
resLength === promiseList.length ? resolve(resList) : run();
})
.catch(reject) // 有一个失败就直接失败
}; // 遍历,模拟前两次依次调用的动作,然后在run内部控制如何执行
promiseList.forEach(() => run());
})
}

执行如下代码,你会发现结果完全符合预期:

const P1 = new Promise((resolve, reject) => {
setTimeout(() => resolve(1), 3000)
});
const P2 = new Promise((resolve, reject) => {
setTimeout(() => resolve(2), 1000)
});
const P3 = new Promise((resolve, reject) => {
setTimeout(() => resolve(3), 2000)
});
PromiseAll([P1, P2, P3]).then((res) => console.log('最终结果为:', res)); // 1 2 3 4 5

假设你将上述三个Promise中任意一个的状态改为reject,最终Promise也只会得到失败的结果,而上述的改写,我们还真的只是去除了限制器的代码,理解起来也非常简单。

肆 ❀ 改写实现Promise.race

race顾名思义就是赛跑,多个Promise第一个执行完状态是啥就是啥,所以针对上面的代码,我们又只需要删除掉resLength === promiseList.length以及递归的相关逻辑即可,直接上代码:

function PromiseRace(promiseList = []) {
// 一定得返回一个promise
return new Promise((resolve, reject) => {
const run = (p) => {
p.then((res) => {
resolve(res);
})
.catch(reject) // 有一个失败就直接失败
}; // 遍历,模拟前两次依次调用的动作,然后在run内部控制如何执行
promiseList.forEach((p) => run(p));
})
}

再运行上面的例子,同样符合预期。

伍 ❀ 总

其实从上篇的文章的题三,到后来的all race的实现,你会发现难度反而是递减的,所以如果你对于这篇文章存在疑虑,我还是建议阅读下前两篇文章:

因两道Promise执行题让我产生自我怀疑,从零手写Promise加深原理理解

一个思路搞定三道Promise并发编程题,手摸手教你实现一个Promise限制器

建议按顺序阅读这三篇文章,我想你对于Promise的理解以及手写,一定会上升一个高度,那么到这里本文结束。

【JS】强化Promise理解,从零手写属于自己的Promise.all与Promise.race的更多相关文章

  1. 史上最完整promise源码手写实现

    史上最完整的promise源码实现,哈哈,之所以用这个标题,是因为开始用的标题<手写promise源码>不被收录 promise自我介绍 promise : "君子一诺千金,承诺 ...

  2. 深入理解 JavaScript 异步系列(3)—— ES6 中的 Promise

    第一部分,Promise 加入 ES6 标准 原文地址 http://www.cnblogs.com/wangfupeng1988/p/6515855.html 未经作者允许不得转载! 从 jquer ...

  3. angular.js的一点理解

    对angular.js的一点理解 2015-01-14 13:18 by MrGeorgeZhao, 317 阅读, 4 评论, 收藏, 编辑 最近一直在学习angular.js.不得不说和jquer ...

  4. 奇舞js笔记——第0课——如何写好原生js代码

    摘要 1.好的代码职责要清晰,javscript不要用来操作样式: 2.API要设计的合理:通用性,适度的抽象(数据抽象,过程抽象),可扩展性: 3.效率问题:用好的.合适的算法(前端程序员要把自己当 ...

  5. 一起学习造轮子(一):从零开始写一个符合Promises/A+规范的promise

    本文是一起学习造轮子系列的第一篇,本篇我们将从零开始写一个符合Promises/A+规范的promise,本系列文章将会选取一些前端比较经典的轮子进行源码分析,并且从零开始逐步实现,本系列将会学习Pr ...

  6. promise 理解与总结

    对Promise的理解 Promise是异步编程的一种解决方案,可以获取异步操作的消息,避免了地狱回调,它比传统的解决方案回调函数和事件更合理和更强大. 所谓Promise,简单说就是一个容器,里面保 ...

  7. 前端基本知识(三):JS的闭包理解

    JS闭包的理解 一.变量的作用域 二.如何从外部读取局部变量 三.什么是闭包 四.深入理解闭包 五.闭包的用途 六.使用闭包注意情况 七.JavaScript的垃圾回收机制 八.一些思考题 一.变量作 ...

  8. 前端基本知识(三):JS的闭包理解(第一个思考题有错误,已修改)

    JS闭包的理解 一.变量的作用域 二.如何从外部读取局部变量 三.什么是闭包 四.深入理解闭包 五.闭包的用途 六.使用闭包注意情况 七.JavaScript的垃圾回收机制 八.一些思考题 一.变量作 ...

  9. JS页面跳转代码怎么写?总结了5种方法

    我们在建站时有些链接是固定的,比如客服咨询链接,一般是第三方url,如果直接加上去不太专业,那么就想着用站内的页面做跳转,跳转用js比较多,那么JS页面跳转代码怎么写呢?ytkah在网上搜索了一下,大 ...

  10. 37.js----浅谈js原型的理解

    浅谈Js原型的理解 一.js中的原型毫无疑问一个难点,学习如果不深入很容易就晕了!    在参考了多方面的资料后,发现解释都太过专业,对于很多还没有接触过面向对象    语言的小白来说,有理解不了里面 ...

随机推荐

  1. ThreadLocal应用及理解

    转载请注明出处: 1. 先展示threadLocal的一个简单封装,该封装用来在不同的请求线程中解析用户参数.在请求经过过滤器时, 对用户的信息进行设置入 ThreadLocalContext 中,可 ...

  2. STM32CubeMX教程20 SPI - W25Q128驱动

    1.准备材料 开发板(正点原子stm32f407探索者开发板V2.4) STM32CubeMX软件(Version 6.10.0) 野火DAP仿真器 keil µVision5 IDE(MDK-Arm ...

  3. Nacos源码 (3) 注册中心

    本文将从一个服务注册示例入手,通过阅读客户端.服务端源码,分析服务注册.服务发现原理. 使用的2.0.2的版本. 客户端 创建NacosNamingService对象 NacosNamingServi ...

  4. 使用ProjectQ生成量子算法指令集

    技术背景 所谓的指令集,按照字面意思来理解就是计算机底层允许使用的操作指令的集合.在量子计算机领域,由于实现方案的不同,在不同的体系内的指令集其实是不一样的,并不是说OpenQASM里面的所有指令都会 ...

  5. Shell-基本

  6. [转帖]OceanBase 存储引擎详解

    https://zhuanlan.zhihu.com/p/436485359 作者简介:沈炼,蚂蚁集团技术风险部数据库高级专家毕业于东南大学,2014年以来从事 OceanBase 在蚂蚁的架构工作, ...

  7. [转帖]Redis优化:Redis使用TCMalloc提高内存分配性能

    TCMalloc(Thread-Caching Malloc)是google开发的开源工具──"google-perftools"中的成员.与标准的glibc库的malloc相比, ...

  8. 快速迁移Grafana/Prometheus等的方式方法

    快速迁移Grafana/Prometheus等的方式方法 背景 有一套鲲鹏环境下面的Grafana监控平台. 同事想能够将平台内的时序数据库等迁移到一个别的机器上进行使用. 自从自己开始搞国产化之后, ...

  9. [转帖]性能优化:Swap调优

    目标:解决大量Log写入占用大量的File Cache,内容利用不充分导致swap 基本原则:尽量使用内存,减少swap,同时,尽早flush到外存,早点释放内存给写cache使用.---特别在持续的 ...

  10. [转帖]MySQL: Convert decimal to binary

    Last Update:2018-12-05 Source: Internet  Author: User Tags decimal to binary mysql code Developer on ...