论文解读(AdSPT)《Adversarial Soft Prompt Tuning for Cross-Domain Sentiment Analysis》
Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ]
论文信息
论文标题:Adversarial Soft Prompt Tuning for Cross-Domain Sentiment Analysis
论文作者:Hui Wu、Xiaodong Shi
论文来源:2022 ACL
论文地址:download
论文代码:download
视屏讲解:click
1 介绍
动机:直接使用固定的预定义模板进行跨域研究,不能对不同域的 $\text{[MASK]}$ 标记在不同域中的不同分布进行建模,因此没有充分利用提示调优技术。在本文中,提出了一种新的对抗性软提示调优方法(AdSPT)来更好地建模跨域情绪分析;
一方面,AdSPT采用单独的软提示而不是硬模板来学习不同域的不同向量,从而减轻了[MASK]标记在掩码语言建模任务中的域差异。另一方面,AdSPT使用一种新的域对抗性训练策略来学习每个源域和目标域之间的域不变表示。在一个公开的情绪分析数据集上的实验表明,我们的模型在单源域适应和多源域适应方面都取得了最新的结果。
贡献:
- 在提示式调优中,我们采用单独的软提示来学习丰富了领域知识的嵌入,从而减轻了[MASK]位置的领域差异;
- 我们设计了一种新的对抗性训练策略来学习[面具]位置的域不变表示;
- 在Amazon评论数据集上的实验表明,AdSPT方法在单源域适应下的平均精度为93.14%(0.46绝对改进),在多源域适应下的平均精度为93.75%(0.81绝对改进);
2 相关
通常使用预定义模板(例如 “It was [MASK].” )在二元情绪分析的提示调优中,正或负的分类结果依赖于掩蔽语言建模(MLM)任务中预定义的标签词(例如,“好,坏”)的概率。然而,不同领域的MLM预测结果的分布可能会有所不同。图1显示了一个例子,图书域审查和视频域审查之间的差异导致了标签词的不同可能性。图书领域评论中的高频标签词是“有用的”,而视频领域评论是“真实的”,两者都不在预定义的“

3 方法
3.1 提示输入
提示输入 $\boldsymbol{x}_{\text {prompt }}$:
$\boldsymbol{x}_{\text {prompt }}= {[\mathbf{e}(\text { "CLS }] "), \mathbf{e}(\boldsymbol{x}), \mathbf{h}_{0}, \ldots, \mathbf{h}_{k-1}, }\mathbf{e}(\text { "[MASK]") }, \mathbf{e}(\text { "[SEP]") })]$
注意:输入 $\boldsymbol{x}_{\text {prompt }}$ 不是一个 $\text{raw text}$ ,而是一个嵌入矩阵,$\text{nn.Embedding}$ 后的结果;
3.2 Encoder 输出
将提示输出作为编码器的输入,得到:
$\mathbf{h}_{[\mathrm{MASK}]}, \mathbf{s}_{[\mathrm{MASK}]}=\mathcal{M}\left(\boldsymbol{x}_{\text {prompt }}\right) $
其中,$\mathbf{h}_{[\text {MASK }]} \in \mathbb{R}^{h}$,$\mathbf{s}_{[\text {MASK }]} \in \mathbb{R}^{|\mathcal{V}|}$,$\mathrm{s}_{[\mathrm{MASK}]}= f\left(\mathbf{h}_{[\text {MASK }]}\right) $,$f$ 是 $\text{MLM head function}$;
3.3 情感分类
情感预测:
$\begin{aligned}p(y \mid \boldsymbol{x}) & =p\left(\mathcal{V}_{y}^{*} \leftarrow[\mathrm{MASK}] \mid \boldsymbol{x}_{\text {prompt }}\right) \\& =\frac{\exp \left(\mathbf{s}_{[\mathrm{MASK}]}\left(\mathcal{V}_{y}^{*}\right)\right)}{\sum_{y^{\prime} \in \mathcal{Y}} \exp \left(\mathbf{s}_{[\mathrm{MASK}]}\left(\mathcal{V}_{y^{\prime}}^{*}\right)\right)}\end{aligned}$
其中,$\mathcal{V}^{*} \in \{ \text{good,bad} \}$;
情感分类损失:
$\mathcal{L}_{\text {class }}\left(\mathcal{S} ; \theta_{\mathcal{M}, p, f}\right) =-\sum_{i=1}^{N} {\left[\log p\left(y_{i} \mid \boldsymbol{x}_{i}\right)^{\mathbb{I}\left\{\hat{y}_{i}=1\right\}}\right.} \left.+\log \left(1-p\left(y_{i} \mid \boldsymbol{x}_{i}\right)\right)^{\mathbb{I}\left\{\hat{y}_{i}=0\right\}}\right]$
3.4 域对抗性训练
设有 $\text{m}$ 个源域 ,源域、目标域的域标签分别为 $0 , 1$,$m$ 个域鉴别器 $\mathbf{g}=\left\{g_{l}\right\}_{l=1}^{m}$;
域预测:
$p(d \mid \boldsymbol{x})=\frac{\exp \left(g_{l}^{d}\left(\mathbf{h}_{[\mathrm{MASK}]}\right)\right)}{\sum_{d^{\prime} \in \mathcal{D}} \exp \left(g_{l}^{d^{\prime}}\left(\mathbf{h}_{[\mathrm{MASK}]}\right)\right)}$
域分类损失:
$\mathcal{L}_{\text {domain }}\left(\hat{\mathcal{S}}, \mathcal{T} ; \theta_{\mathcal{M}, p, \mathbf{g}}\right) =-\sum_{l=1}^{m} \sum_{i=1}^{N_{l}^{s}+N^{t}} {\left[\log p\left(d_{i} \mid \boldsymbol{x}_{i}\right)^{\mathbb{I}\left\{\hat{d}_{i}=1\right\}}\right.}\left.+\log \left(1-p\left(d_{i} \mid \boldsymbol{x}_{i}\right)\right)^{\mathbb{I}\left\{\hat{d}_{i}=0\right\}}\right]$
域对抗训练:
$\underset{\mathcal{M}, p}{\text{max}}\; \underset{\mathbf{g}}{\text{min}} \;\mathcal{L}_{\text {domain }}\left(\hat{\mathcal{S}}, \mathcal{T} ; \theta_{\mathcal{M}, p, \mathbf{g}}\right)$
3.5 训练目标
优化 $\text{PLM}$ $\mathcal{M}$ ,$\text{soft prompt embeddings}$ $p$ , $\text{MLM head function}$ $f$,$\text{domain discriminators }$ $\mathbf{g}$:
$\underset{\mathcal{M}, p, f}{\text{min}} \{ \lambda \mathcal{L}_{\text {class }}\left(\mathcal{S} ; \theta_{\mathcal{M}, p, f}\right) \left.-\underset{\mathbf{g}}{\text{min}} \mathcal{L}_{\text {domain }}\left(\hat{\mathcal{S}}, \mathcal{T} ; \theta_{\mathcal{M}, p, \mathbf{g}}\right)\right\}$
3.6 算法
如下:

4 实验
single-source domain adaptation on Amazon reviews

Results of multi-source domain adaptation on Amazon reviews

Ablation experiments

论文解读(AdSPT)《Adversarial Soft Prompt Tuning for Cross-Domain Sentiment Analysis》的更多相关文章
- 论文阅读:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis
论文标题:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis 论文链接:http://arxi ...
- 论文解读( FGSM)《Adversarial training methods for semi-supervised text classification》
论文信息 论文标题:Adversarial training methods for semi-supervised text classification论文作者:Taekyung Kim论文来源: ...
- [论文解读] 阿里DIEN整体代码结构
[论文解读] 阿里DIEN整体代码结构 目录 [论文解读] 阿里DIEN整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 4.1 基本逻辑 ...
- 图像分类:CVPR2020论文解读
图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https:// ...
- 论文解读(IDEC)《Improved Deep Embedded Clustering with Local Structure Preservation》
Paper Information Title:<Improved Deep Embedded Clustering with Local Structure Preservation>A ...
- 面向个性化需求的在线云数据库混合调优系统 | SIGMOD 2022入选论文解读
SIGMOD 数据管理国际会议是数据库领域具有最高学术地位的国际性会议,位列数据库方向顶级会议之首.近日,腾讯云数据库团队的最新研究成果入选 SIGMOD 2022 Research Full Pap ...
- itemKNN发展史----推荐系统的三篇重要的论文解读
itemKNN发展史----推荐系统的三篇重要的论文解读 本文用到的符号标识 1.Item-based CF 基本过程: 计算相似度矩阵 Cosine相似度 皮尔逊相似系数 参数聚合进行推荐 根据用户 ...
- CVPR2019 | Mask Scoring R-CNN 论文解读
Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...
- AAAI2019 | 基于区域分解集成的目标检测 论文解读
Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...
- Gaussian field consensus论文解读及MATLAB实现
Gaussian field consensus论文解读及MATLAB实现 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.Introduction ...
随机推荐
- django--循环调用的解决办法
不要导入该APP的包,而是加上双引号写入"App.xxx"
- 【Java】Java代码拷贝文件的速度
Java代码拷贝文件的速度究竟有多快? 前言 最近学习Java到了流处理,其中有种流叫FileInputStream和FileOutputStream,简单来说,就是操作文件的,老师给我们示范了一个非 ...
- ODOO13之六:Odoo 13开发之模型 – 结构化应用数据
在本系列文章第三篇Odoo 13 开发之创建第一个 Odoo 应用中,我们概览了创建 Odoo 应用所需的所有组件.本文及接下来的一篇我们将深入到组成应用的每一层:模型层.视图层和业务逻辑层. 本文中 ...
- Hugging News #0602: Transformers Agents 介绍、大语言模型排行榜发布!
每一周,我们的同事都会向社区的成员们发布一些关于 Hugging Face 相关的更新,包括我们的产品和平台更新.社区活动.学习资源和内容更新.开源库和模型更新等,我们将其称之为「Hugging Ne ...
- 写一个Python简单的Socket网络通讯
完成需求 用Python完成一个简单的Socket通讯实例 1. 服务端 用于提供服务 源码: import socket s = socket.socket() # 创建服务器端套接字 # sk.s ...
- 浅聊一下 C#程序的 内存映射文件 玩法
一:背景 1. 讲故事 前段时间训练营里有朋友问 内存映射文件 是怎么玩的?说实话这东西理论我相信很多朋友都知道,就是将文件映射到进程的虚拟地址,说起来很容易,那如何让大家眼见为实呢?可能会难倒很多人 ...
- Some book
## book [C++] Accelerated C++ C++ Primer 5th C++ 程序设计语言: 1 ~ 3 C++ 程序设计语言: 4 C++ 编程思想 C++ 标准库 2th C+ ...
- WWDC2023 Session系列:探索XCode15新特性
一.版本说明 XCode 15 beta 发布于 2023 年 6月5日, 可支持 macOS 13.3 或以上版本, 你可以按需下载需要的平台. 二.新增特性 1.代码智能提示 (Code comp ...
- TIM-BLDC六步换相-串口中断模拟检测霍尔信号换相-软件COM事件解析
TIM-BLDC六步换相-串口中断模拟检测霍尔信号换相-软件COM事件解析 一.COM事件解析 COM事件简介:COM事件即换相事件只用于高级定时器当中,其主要目的是用在BLDC方波的控制中,用于同时 ...
- 一种实现Spring动态数据源切换的方法
1 目标 不在现有查询代码逻辑上做任何改动,实现dao维度的数据源切换(即表维度) 2 使用场景 节约bdp的集群资源.接入新的宽表时,通常uat验证后就会停止集群释放资源,在对应的查询服务器uat环 ...