Note:[ wechat:Y466551 | 可加勿骚扰,付费咨询 ]

论文信息

论文标题:Adversarial Soft Prompt Tuning for Cross-Domain Sentiment Analysis
论文作者:Hui Wu、Xiaodong Shi
论文来源:2022 ACL
论文地址:download 
论文代码:download
视屏讲解:click

1 介绍

  动机:直接使用固定的预定义模板进行跨域研究,不能对不同域的 $\text{[MASK]}$ 标记在不同域中的不同分布进行建模,因此没有充分利用提示调优技术。在本文中,提出了一种新的对抗性软提示调优方法(AdSPT)来更好地建模跨域情绪分析;

  一方面,AdSPT采用单独的软提示而不是硬模板来学习不同域的不同向量,从而减轻了[MASK]标记在掩码语言建模任务中的域差异。另一方面,AdSPT使用一种新的域对抗性训练策略来学习每个源域和目标域之间的域不变表示。在一个公开的情绪分析数据集上的实验表明,我们的模型在单源域适应和多源域适应方面都取得了最新的结果。

  贡献:

    • 在提示式调优中,我们采用单独的软提示来学习丰富了领域知识的嵌入,从而减轻了[MASK]位置的领域差异;
    • 我们设计了一种新的对抗性训练策略来学习[面具]位置的域不变表示;
    • 在Amazon评论数据集上的实验表明,AdSPT方法在单源域适应下的平均精度为93.14%(0.46绝对改进),在多源域适应下的平均精度为93.75%(0.81绝对改进); 

2 相关

  通常使用预定义模板(例如 “It was [MASK].” )在二元情绪分析的提示调优中,正或负的分类结果依赖于掩蔽语言建模(MLM)任务中预定义的标签词(例如,“好,坏”)的概率。然而,不同领域的MLM预测结果的分布可能会有所不同。图1显示了一个例子,图书域审查和视频域审查之间的差异导致了标签词的不同可能性。图书领域评论中的高频标签词是“有用的”,而视频领域评论是“真实的”,两者都不在预定义的“

  

3 方法

3.1 提示输入

  提示输入 $\boldsymbol{x}_{\text {prompt }}$:

    $\boldsymbol{x}_{\text {prompt }}= {[\mathbf{e}(\text { "CLS }] "), \mathbf{e}(\boldsymbol{x}), \mathbf{h}_{0}, \ldots, \mathbf{h}_{k-1}, }\mathbf{e}(\text { "[MASK]") }, \mathbf{e}(\text { "[SEP]") })]$

  注意:输入 $\boldsymbol{x}_{\text {prompt }}$ 不是一个 $\text{raw text}$ ,而是一个嵌入矩阵,$\text{nn.Embedding}$ 后的结果;

3.2 Encoder 输出

  将提示输出作为编码器的输入,得到:

    $\mathbf{h}_{[\mathrm{MASK}]}, \mathbf{s}_{[\mathrm{MASK}]}=\mathcal{M}\left(\boldsymbol{x}_{\text {prompt }}\right) $

  其中,$\mathbf{h}_{[\text {MASK }]} \in \mathbb{R}^{h}$,$\mathbf{s}_{[\text {MASK }]} \in \mathbb{R}^{|\mathcal{V}|}$,$\mathrm{s}_{[\mathrm{MASK}]}= f\left(\mathbf{h}_{[\text {MASK }]}\right) $,$f$ 是 $\text{MLM head function}$;

3.3 情感分类

  情感预测:

    $\begin{aligned}p(y \mid \boldsymbol{x}) & =p\left(\mathcal{V}_{y}^{*} \leftarrow[\mathrm{MASK}] \mid \boldsymbol{x}_{\text {prompt }}\right) \\& =\frac{\exp \left(\mathbf{s}_{[\mathrm{MASK}]}\left(\mathcal{V}_{y}^{*}\right)\right)}{\sum_{y^{\prime} \in \mathcal{Y}} \exp \left(\mathbf{s}_{[\mathrm{MASK}]}\left(\mathcal{V}_{y^{\prime}}^{*}\right)\right)}\end{aligned}$

  其中,$\mathcal{V}^{*} \in  \{ \text{good,bad} \}$;

  情感分类损失:

    $\mathcal{L}_{\text {class }}\left(\mathcal{S} ; \theta_{\mathcal{M}, p, f}\right) =-\sum_{i=1}^{N}  {\left[\log p\left(y_{i} \mid \boldsymbol{x}_{i}\right)^{\mathbb{I}\left\{\hat{y}_{i}=1\right\}}\right.} \left.+\log \left(1-p\left(y_{i} \mid \boldsymbol{x}_{i}\right)\right)^{\mathbb{I}\left\{\hat{y}_{i}=0\right\}}\right]$

3.4 域对抗性训练

  设有 $\text{m}$ 个源域 ,源域、目标域的域标签分别为 $0 , 1$,$m$ 个域鉴别器 $\mathbf{g}=\left\{g_{l}\right\}_{l=1}^{m}$;

  域预测:

    $p(d \mid \boldsymbol{x})=\frac{\exp \left(g_{l}^{d}\left(\mathbf{h}_{[\mathrm{MASK}]}\right)\right)}{\sum_{d^{\prime} \in \mathcal{D}} \exp \left(g_{l}^{d^{\prime}}\left(\mathbf{h}_{[\mathrm{MASK}]}\right)\right)}$

  域分类损失:

    $\mathcal{L}_{\text {domain }}\left(\hat{\mathcal{S}}, \mathcal{T} ; \theta_{\mathcal{M}, p, \mathbf{g}}\right) =-\sum_{l=1}^{m} \sum_{i=1}^{N_{l}^{s}+N^{t}} {\left[\log p\left(d_{i} \mid \boldsymbol{x}_{i}\right)^{\mathbb{I}\left\{\hat{d}_{i}=1\right\}}\right.}\left.+\log \left(1-p\left(d_{i} \mid \boldsymbol{x}_{i}\right)\right)^{\mathbb{I}\left\{\hat{d}_{i}=0\right\}}\right]$

  域对抗训练:

    $\underset{\mathcal{M}, p}{\text{max}}\; \underset{\mathbf{g}}{\text{min}} \;\mathcal{L}_{\text {domain }}\left(\hat{\mathcal{S}}, \mathcal{T} ; \theta_{\mathcal{M}, p, \mathbf{g}}\right)$

3.5 训练目标

  优化 $\text{PLM}$  $\mathcal{M}$ ,$\text{soft prompt embeddings}$  $p$ , $\text{MLM head function}$  $f$,$\text{domain discriminators }$ $\mathbf{g}$:

    $\underset{\mathcal{M}, p, f}{\text{min}} \{ \lambda \mathcal{L}_{\text {class }}\left(\mathcal{S} ; \theta_{\mathcal{M}, p, f}\right) \left.-\underset{\mathbf{g}}{\text{min}} \mathcal{L}_{\text {domain }}\left(\hat{\mathcal{S}}, \mathcal{T} ; \theta_{\mathcal{M}, p, \mathbf{g}}\right)\right\}$

3.6 算法

  如下:

  

4 实验

single-source domain adaptation on Amazon reviews

  

Results of multi-source domain adaptation on Amazon reviews

  

Ablation experiments

  

论文解读(AdSPT)《Adversarial Soft Prompt Tuning for Cross-Domain Sentiment Analysis》的更多相关文章

  1. 论文阅读:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis

    论文标题:Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis 论文链接:http://arxi ...

  2. 论文解读( FGSM)《Adversarial training methods for semi-supervised text classification》

    论文信息 论文标题:Adversarial training methods for semi-supervised text classification论文作者:Taekyung Kim论文来源: ...

  3. [论文解读] 阿里DIEN整体代码结构

    [论文解读] 阿里DIEN整体代码结构 目录 [论文解读] 阿里DIEN整体代码结构 0x00 摘要 0x01 文件简介 0x02 总体架构 0x03 总体代码 0x04 模型基类 4.1 基本逻辑 ...

  4. 图像分类:CVPR2020论文解读

    图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https:// ...

  5. 论文解读(IDEC)《Improved Deep Embedded Clustering with Local Structure Preservation》

    Paper Information Title:<Improved Deep Embedded Clustering with Local Structure Preservation>A ...

  6. 面向个性化需求的在线云数据库混合调优系统 | SIGMOD 2022入选论文解读

    SIGMOD 数据管理国际会议是数据库领域具有最高学术地位的国际性会议,位列数据库方向顶级会议之首.近日,腾讯云数据库团队的最新研究成果入选 SIGMOD 2022 Research Full Pap ...

  7. itemKNN发展史----推荐系统的三篇重要的论文解读

    itemKNN发展史----推荐系统的三篇重要的论文解读 本文用到的符号标识 1.Item-based CF 基本过程: 计算相似度矩阵 Cosine相似度 皮尔逊相似系数 参数聚合进行推荐 根据用户 ...

  8. CVPR2019 | Mask Scoring R-CNN 论文解读

    Mask Scoring R-CNN CVPR2019 | Mask Scoring R-CNN 论文解读 作者 | 文永亮 研究方向 | 目标检测.GAN 推荐理由: 本文解读的是一篇发表于CVPR ...

  9. AAAI2019 | 基于区域分解集成的目标检测 论文解读

    Object Detection based on Region Decomposition and Assembly AAAI2019 | 基于区域分解集成的目标检测 论文解读 作者 | 文永亮 学 ...

  10. Gaussian field consensus论文解读及MATLAB实现

    Gaussian field consensus论文解读及MATLAB实现 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.Introduction ...

随机推荐

  1. vue全家桶进阶之路21:Vue Loader 打包单位件组件

    Vue Loader 是一个 webpack 插件,它允许在单个文件中定义 Vue 组件,并将其包装为 CommonJS 模块,以便在应用程序中使用.使用 Vue Loader 打包的组件被称为单文件 ...

  2. Module build failed: Error: Plugin/Preset files are not allowed to export objects, only functions.

    运行项目是提示Module build failed: Error: Plugin/Preset files are not allowed to export objects, only funct ...

  3. 执行pod setup 报错error: RPC failed; curl 18 transfer closed with outstanding read data remainin

    执行pod setup 报错 error: RPC failed; curl 18 transfer closed with outstanding read data remaining fatal ...

  4. git上传对象文件错误解决方案

    git上传对象文件错误解决方案 ​ 时隔一个星期, 当我再次完成开发之后, 准备将代码上传, 却出现了一个上传代码的错误, 记录一下错误和解决方案 解决方案: 运行git fsck --full (b ...

  5. Dapr在Java中的实践 之 环境准备

    Dapr简介 Dapr (Distributed Application Runtime)是一个可移植的.事件驱动的运行时,它使任何开发人员都可以轻松地构建运行在云和边缘上的弹性.无状态和有状态的应用 ...

  6. Windows/Linux 下功能强大的桌面截图软件

    说到桌面截图软件,很多人首先想到的是 QQ 自带的截图,或者更高级功能更强大的 Snipaste 截图工具. 独立版本的 QQ 截图至少我目前没找到官方正式的下载链接,默认需要安装和打开 QQ 才能使 ...

  7. 7.1 套接字(socket)

    套接字(socket)是计算机之间进行通信的一种技术,它允许不同主机上的进程之间进行数据交换.在Python中,我们可以使用socket模块来创建和使用套接字. 首先,我们需要导入socket模块: ...

  8. STL-priority_queue(ACM)

    1.无法访问v.front().v.back() 2.是一个 堆,默认为大根堆,改造后为小根堆 大根堆 重构函数(默认)(大根堆) priority_queue<int> v; 基本操作 ...

  9. 「Python实用秘技14」快速优化Python导包顺序

    本文完整示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/PythonPracticalSkills 这是我的系列文章「Python实用秘技」的第14 ...

  10. ndk std_thread 获取pid

    本文链接 https://www.cnblogs.com/wanger-sjtu/p/16817532.html 最近在解决tvm绑核问题时,发现android下绑核只有sched_setaffini ...