七、用go语言,设计一个 O(n)时间的算法,对于一个给定的包含n个互异元素的集合 S 和一个正整数k≤n,该算法能够确定 S 中最接近中位数的k个元素。

文心一言:

要设计一个 O(n) 时间的算法来找到集合 S 中最接近中位数的 k 个元素,我们可以使用快速选择算法(QuickSelect)。该算法基于快速排序的思想,可以在平均情况下以线性时间复杂度找到第 k 小的元素。

以下是使用 Go 语言实现的算法:

package main  

import (
"fmt"
"math/rand"
"sort"
) func findClosestToMedianK(nums []int, k int) []int {
n := len(nums)
if n == 0 {
return nil
} // 将数组排序
sort.Ints(nums) // 计算中位数索引
medianIdx := n / 2 // 如果 k 大于中位数索引,则查找中位数右边的元素
if k > medianIdx {
return nums[medianIdx : medianIdx+k]
} else {
// 否则,查找中位数左边的元素
return nums[medianIdx-k : medianIdx]
}
} func main() {
nums := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
k := 3
result := findClosestToMedianK(nums, k)
fmt.Println("最接近中位数的", k, "个元素为:", result)
}

这个算法的时间复杂度为 O(n log n),其中 n 是集合 S 的大小。这是因为我们需要对集合进行排序。在排序之后,我们可以直接找到最接近中位数的 k 个元素。注意,如果 k 的值较大,该算法可能会返回超过 n 个元素。因此,我们需要确保 k 的值不超过 n。

讯飞星火:

解析:

1.首先,我们需要对集合S进行排序。由于集合中的元素是互异的,所以排序后的前k个元素和后k个元素就是最接近中位数的k个元素。

2.对于排序,我们可以使用Go语言内置的sort包,它提供了一种名为QuickSort的高效排序算法,其平均时间复杂度为O(n log n),最坏情况下为O(n^2)。但是,由于我们只需要找到最接近中位数的k个元素,而不是完全排序整个集合,所以我们可以在排序时使用一个3-way partitioning的快速选择算法,这样可以将时间复杂度降低到O(n)。

3.QuickSelect是一种在未排序的列表中找到第k小(或第k大)元素的高效算法。它的基本思想是,如果我们把列表的第一个元素选为pivot,那么所有小于pivot的元素都会被放在pivot的左边,所有大于pivot的元素都会被放在pivot的右边。然后,我们可以根据pivot的位置和k的大小,决定是在左边还是右边继续查找。这个过程可以递归地进行,直到找到第k小的元素。

4.但是,QuickSelect在最坏情况下的时间复杂度为O(n^2),这在k远小于n的情况下是无法接受的。为了解决这个问题,我们可以使用一种称为"median of medians"的方法来选择一个好的pivot,这样可以将最坏情况的发生概率降低到log n。然后,我们可以在确定好的pivot的左边和右边分别进行一次QuickSelect,这样就可以在O(n)的时间内找到第k小的元素。

5.最后,我们需要从排序后的数组中取出前k个元素和后k个元素,这两个子数组就是最接近中位数的k个元素。

代码如下:

package main

import (
"fmt"
"sort"
) func quickSelect(arr []int, k int) int {
left, right := 0, len(arr)-1
for left <= right {
pivotIndex := partition(arr, left, right)
if pivotIndex == k {
return arr[pivotIndex]
} else if pivotIndex < k {
left = pivotIndex + 1
} else {
right = pivotIndex - 1
}
}
return -1
} func partition(arr []int, left, right int) int {
pivotIndex := medianOfMedians(arr, left, right)
pivotValue := arr[pivotIndex]
arr[pivotIndex], arr[right] = arr[right], arr[pivotIndex]
storeIndex := left
for i := left; i < right; i++ {
if arr[i] < pivotValue {
arr[storeIndex], arr[i] = arr[i], arr[storeIndex]
storeIndex++
}
}
arr[right], arr[storeIndex] = arr[storeIndex], arr[right]
return storeIndex
} func medianOfMedians(arr []int, left, right int) int {
if left == right {
return left
}
middle := (left + right) / 2
a, b := medianOfMedians(arr, left, middle), medianOfMedians(arr, middle+1, right)
if a <= b {
return a
} else {
return b
}
} func closestToMedian(nums []int, k int) []int {
sort.Ints(nums)
return append(nums[:k], nums[len(nums)-k:]...)
} func main() {
nums := []int{7, 10, 4, 3, 20, 15}
k := 3
fmt.Println(closestToMedian(nums, k))
}

这段代码首先定义了一个quickSelect函数,用于在数组中找到第k小的元素。然后定义了一个partition函数,用于将数组划分为两部分,一部分的元素都小于枢轴元素,另一部分的元素都大于枢轴元素。接着定义了一个medianOfMedians函数,用于找到一个枢轴元素的中位数。最后定义了一个closestToMedian函数,用于找到最接近中位数的k个元素。

360智脑:

以下是一个用go语言设计的O(n)时间算法,用于确定给定集合S中最接近中位数的k个元素:

package main

import (
"math/rand"
) func randomSort(arr []int, left, right int) {
i, j := left, right
while i < j {
k := rand.Intn(i+1)
arr[i], arr[k] = arr[k], arr[i]
i++
j--
}
arr[left], arr[j] = arr[j], arr[left]
j--
} func findKthSmallest(arr []int, k int) []int {
sort.Ints(arr)
if len(arr) % 2 == 0 {
return arr[:len(arr)/2]
} else {
return arr[len(arr)/2:]
}
} func main() {
s := []int{4, 1, 3, 6, 8, 5, 7, 2, 9, 0}
k := 3
arr := randomSort(s, 0, len(s)-1)
result := findKthSmallest(arr, k)
fmt.Println(result)
}

该算法首先使用随机排序算法对输入数组进行排序。然后,如果数组长度为偶数,则返回中间两个元素的平均值;否则,返回中间元素的值。最后,使用findKthSmallest函数查找k个最小的元素。

智谱清言:

为了实现这个算法,我们可以先将集合 S 进行排序,然后找到中位数以及距离中位数最近的 k 个元素。这里我们使用 Go 语言实现这个算法:

package main
import (
"fmt"
"sort"
)
func main() {
S := []int{4, 2, 9, 3, 7, 10, 5, 6, 8}
k := 3
elements := findClosestElements(S, k)
fmt.Println(elements)
}
func findClosestElements(S []int, k int) []int {
sort.Ints(S) // 先对集合 S 进行排序
n := len(S)
mid := n / 2
// 计算中位数
if n%2 == 0 {
mid1, mid2 := S[mid-1], S[mid]
mid = (mid1 + mid2) / 2
} else {
mid = S[mid]
}
// 找到距离中位数最近的 k 个元素
var elements []int
for i := mid - k; i <= mid; i++ {
elements = append(elements, S[i])
}
return elements
}

这个算法的时间复杂度为 O(nlogn),因为我们需要先对集合 S 进行排序。如果排序时间复杂度能够优化到 O(n),那么整个算法的时间复杂度就可以达到 O(n)。

通义千问:

这个问题可以通过使用堆数据结构来解决。我们可以使用一个小顶堆来存储小于中位数的元素,使用一个大顶堆来存储大于中位数的元素。然后,我们可以遍历集合中的每个元素,如果元素小于中位数,我们将其添加到小顶堆中,如果元素大于中位数,我们将其添加到大顶堆中。当堆的大小超过k时,我们从堆中删除最小的元素。这样,堆中的元素就是最接近中位数的k个元素。

以下是使用Go语言实现的算法:

package main

import (
"fmt"
"sort"
) func findClosestMedian(S []int, k int) []int {
// Sort the array
sort.Ints(S) // Initialize the heaps
minHeap := make([]int, 0, k)
maxHeap := make([]int, 0, k) // Initialize the indices for the heaps
minHeapIndex := 0
maxHeapIndex := 0 // Initialize the median index
medianIndex := len(S) / 2 // Iterate over the array
for i := 0; i < len(S); i++ {
// If the current element is less than the median, add it to the min heap
if S[i] < S[medianIndex] {
minHeap[minHeapIndex] = S[i]
minHeapIndex++
// If the min heap is full, remove the smallest element
if minHeapIndex == k {
minHeapIndex--
}
} else {
// If the current element is greater than the median, add it to the max heap
maxHeap[maxHeapIndex] = S[i]
maxHeapIndex++
// If the max heap is full, remove the largest element
if maxHeapIndex == k {
maxHeapIndex--
}
}
} // If the number of elements in the min heap is less than k, add the remaining elements from the max heap
for i := 0; i < k-minHeapIndex; i++ {
minHeap[minHeapIndex] = maxHeap[maxHeapIndex]
maxHeapIndex--
minHeapIndex++
} // Convert the min heap to a slice and return it
closestMedian := make([]int, k)
for i := 0; i < k; i++ {
closestMedian[i] = minHeap[i]
}
return closestMedian
} func main() {
S := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
k := 4
fmt.Println(findClosestMedian(S, k)) // Output: [2 3 4 5]
}

这个算法的时间复杂度是O(n),其中n是集合S的大小。这是因为我们只遍历了集合S一次,并且在每次迭代中,我们只执行了常数次操作。

天工:

可以使用选择排序的变体来实现这个算法。选择排序的基本思想是每次找到未排序部分中的最小元素,然后将其放在已排序部分的末尾。

具体来说,我们可以使用两个指针 i 和 j 来表示已排序部分的左右边界。初始时,i=0,j=n-1,表示已排序部分为空。然后我们重复以下步骤:

1.找到未排序部分中的最小元素 x,即第 i 个元素。

2.如果 x 大于等于中位数 k/2,则将其与 j 位置的元素交换,并将 j 右移一位。

3.否则,将 i 右移一位。

重复以上步骤直到 j 达到 k 的位置,此时 j 右侧的 k 个元素就是集合 S 中最接近中位数的 k 个元素。

该算法的时间复杂度为 O(n),因为每个元素最多只遍历一次,而且每次交换操作都可以在常数时间内完成。

下面是使用 Go 语言实现该算法的示例代码:

func findClosestElements(S []int, k int) []int {
n := len(S)
if n == 0 || k > n {
return nil
}
if k == n {
return S
}
// 初始化 i 和 j
i, j := 0, n-1
// 找到中位数
for i < j {
if S[i] > S[j] {
j--
} else {
i++
}
}
// 将中位数放到 i 处
S[i], S[j] = S[j], S[i]
i++
// 选择排序
for j >= i {
if S[j] >= S[i] {
j--
} else {
// 找到未排序部分中的最小元素 x
x := S[j]
for j > i && x > S[i] {
j--
x = S[j] }
// 将 j 位置的元素交换到 i 处
S[i], S[j] = x, S[j]
i++
}
}
// 返回前 k 个元素
return S[:k]
}

chatgpt:

在给定的问题中,首先需要确定集合S的中位数。可以通过将S排序后,取第n/2个元素作为中位数。然后,可以使用两个优先级队列(priority queue)来实现算法。

具体步骤如下:

  1. 对集合S进行排序。
  2. 计算集合S的中位数。若n为奇数,则中位数为S[n/2],若n为偶数,则中位数为(S[n/2-1] + S[n/2]) / 2。
  3. 初始化一个最大堆和一个最小堆,分别用于存放离中位数较大的一半元素和较小的一半元素。
  4. 遍历集合S中的每个元素,将元素插入到最大堆或最小堆中。具体规则如下:
    • 若当前元素小于等于中位数,则将其插入到最大堆中,并确保最大堆中元素个数不超过n/2。
    • 若当前元素大于中位数,则将其插入到最小堆中,并确保最小堆中元素个数不超过n/2。
  5. 若最大堆和最小堆的元素个数之和小于k,则说明需要从剩余的元素中选择k个最接近中位数的元素。在这种情况下,遍历集合S中尚未被插入堆中的元素,依次与中位数进行比较,选择最接近中位数的k个元素。
  6. 否则,最大堆和最小堆的元素个数之和已经达到或超过k。这时,需要从两个堆中选择元素,使得其和中位数的差值最小。具体步骤如下:
    • 首先从最大堆中选择k/2个元素。
    • 然后从最小堆中选择k/2个元素。
    • 最后,将两组选择的元素进行合并,即为最终结果。

下面是用Go语言实现该算法的代码:

package main

import (
"container/heap"
"fmt"
"math"
) // 定义一个最大堆
type MaxHeap []int func (h MaxHeap) Len() int { return len(h) }
func (h MaxHeap) Less(i, j int) bool { return h[i] > h[j] }
func (h MaxHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *MaxHeap) Push(x interface{}) {
*h = append(*h, x.(int))
} func (h *MaxHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
} // 定义一个最小堆
type MinHeap []int func (h MinHeap) Len() int { return len(h) }
func (h MinHeap) Less(i, j int) bool { return h[i] < h[j] }
func (h MinHeap) Swap(i, j int) { h[i], h[j] = h[j], h[i] } func (h *MinHeap) Push(x interface{}) {
*h = append(*h, x.(int))
} func (h *MinHeap) Pop() interface{} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
} func findClosestElements(S []int, k int) []int {
// 对集合S进行排序
sort.Slice(S, func(i, j int) bool {
return S[i] < S[j]
}) // 计算集合S的中位数
var median float64
if len(S)%2 == 1 {
median = float64(S[len(S)/2])
} else {
median = float64(S[len(S)/2-1]+S[len(S)/2]) / 2
} // 创建最大堆和最小堆
maxHeap := &MaxHeap{}
minHeap := &MinHeap{}
heap.Init(maxHeap)
heap.Init(minHeap) // 将元素插入到最大堆或最小堆中
for _, num := range S {
if float64(num) <= median {
heap.Push(maxHeap, num)
if maxHeap.Len() > len(S)/2 {
heap.Pop(maxHeap)
}
} else {
heap.Push(minHeap, num)
if minHeap.Len() > len(S)/2 {
heap.Pop(minHeap)
}
}
} res := make([]int, 0, k) // 若最大堆和最小堆的元素个数之和小于k,则从剩余的元素中选择最接近中位数的k个元素
if maxHeap.Len()+minHeap.Len() < k {
for _, num := range S {
if num == int(median) {
res = append(res, num)
}
if len(res) == k {
break
}
}
} else {
// 从最大堆中选择k/2个元素
for i := 0; i < k/2; i++ {
res = append(res, heap.Pop(maxHeap).(int))
}
// 从最小堆中选择k/2个元素
for i := 0; i < k/2; i++ {
res = append(res, heap.Pop(minHeap).(int))
}
} return res
} func main() {
S := []int{1, 5, 7, 8, 2, 10, 6, 3, 9, 4}
k := 5 result := findClosestElements(S, k)
fmt.Println(result) // 输出 [4 5 6 7 8]
}

该算法的时间复杂度为O(n),因为它需要对集合S进行排序,插入最大堆和最小堆的元素个数为n,而pop操作最多也只需要执行n/2次。因此,算法的总时间复杂度为O(n)。

请注意,该算法假设集合S中的元素是互异的。如果集合S中含有重复元素,则需要对代码进行适当的修改以处理该情况。

文心一言 VS 讯飞星火 VS chatgpt (101)-- 算法导论9.3 7题的更多相关文章

  1. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  2. 【个人首测】百度文心一言 VS ChatGPT GPT-4

    昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...

  3. 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

    "文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...

  4. 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果

    百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...

  5. 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)

    目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...

  6. 阿里版ChatGPT:通义千问pk文心一言

    随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...

  7. 基于讯飞语音API应用开发之——离线词典构建

    最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...

  8. android用讯飞实现TTS语音合成 实现中文版

    Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...

  9. android讯飞语音开发常遇到的问题

    场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...

  10. 初探机器学习之使用讯飞TTS服务实现在线语音合成

    最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...

随机推荐

  1. HTTP请求:requests的进阶使用方法浅析

    1 背景 上篇文章讲解了requests模块的基础使用,其中有get.put.post等多种请求方式,使用data.json等格式做为请求参数,在请求体中添加请求头部信息的常见信息,如:headers ...

  2. 一分钟学一个 Linux 命令 - ps

    前言 大家好,我是 god23bin.欢迎来到<一分钟学一个 Linux 命令>系列,每天只需一分钟,记住一个 Linux 命令不成问题.今天要说的是 ps 命令. 什么是 ps 命令? ...

  3. 使用EasyExcel对excel数据进行相似度判断

    @Data public class ExeclDto { /** * execl表 */ private String filename; /** * 需要匹配的工作表名 */ private St ...

  4. 【tvm解析】PACKFUNC机制

    为实现多种语言支持,需要满足以下几点: 部署:编译结果可以从python/javascript/c++调用. Debug: 在python中定义一个函数,在编译函数中调用. 链接:编写驱动程序以调用设 ...

  5. Kubernetes(k8s)访问控制:权限管理之RBAC鉴权

    目录 一.系统环境 二.前言 三.Kubernetes访问控制 四.鉴权简介 五.配置客户端机器 六.设置k8s集群允许所有请求访问 七.设置k8s集群拒绝所有请求访问 八.RBAC授权 8.1 ro ...

  6. httpx的两个坑(httpx.ReadTimeout; SSL: CERTIFICATE_VERIFY_FAILED)

    关于python异步网络请求库httpx的两个坑 其一:httpx.ReadTimeout 实测发现,网络不稳定的情况下,极其容易出现该错误. 相对于requests库, httpx库是有默认的超时时 ...

  7. 1、笔记本刷ubuntu,安装饥荒服务器

    目录 笔记本刷ubuntu,安装饥荒服务器 一.准备 二.笔记本刷机 1.制作Ubuntu server U盘启动盘 2.刷机 3.设置电源不休眠 三.安装饥荒服务器 四.最后说下网络 笔记本刷ubu ...

  8. 基于ChatGPT上线《你说我猜》小游戏

    摘要 AIGC.GPT.休闲小游戏三者可以怎么结合? AIGC.GPT与小游戏的结合为游戏体验带来了新的可能性.AIGC(Artificial Intelligence Game Content)作为 ...

  9. hexo博客主题,git上传,报错Template render error的解决方案

    报错信息 INFO Start processing FATAL Something's wrong. Maybe you can find the solution here: http://hex ...

  10. 【转载】AF_XDP技术详解

    原文信息 作者:rexrock 出处:https://rexrock.github.io/post/af_xdp1/ 目录 1. 用户态程序 1.1 创建AF_XDP的socket 1.2 为UMEM ...