DP 复习
背包
约定使用 \(v_i\) 表示放入第 \(i\) 件物品的花费,\(w_i\) 表示第 \(i\) 件物品的价值,背包容量 \(M\),物品件数 \(N\)。
01 背包
每种物品仅有一件,可以选择放或不放。
设 \(f(i,j)\) 表示前 \(i\) 件物品恰填满容量为 \(j\) 的背包可以获得的最大价值。则其状态转移方程便是:
\]
若放第 \(i\) 件物品,那么问题就转化为“前 \(i-1\) 件物品放入剩下的容量为 \(j-v_i\) 的背包中”,此时能获得的最大价值就是 \(f(i-1,j-v_i)\) 再加上通过放入第 \(i\) 件物品获得的价值 \(w_i\);
如果不放第 \(i\) 件物品,那么问题就转化为“前 \(i - 1\) 件物品放入容量为 \(j\) 的背包中”,价值为 \(f(i-1,j)\)。
可以用滚动数组优化掉第一维,但注意要逆序枚举容量以达到“每种物品只能取一件”的限制。
for (int i = 1; i <= n; ++ i) {
for (int j = m; j >= v[i]; ++ j) {
f[j] = max(f[j], f[j - v[i]] + w[i];
}
}
若要求 恰好装满,则应将 \(f(1\ldots M)\) 初始化为 \(-\infty\),因为如果要求背包恰好装满,那么此时只有容量为 \(0\) 的背包可以在什么也不装且价值为 \(0\) 的情况下被“恰好装满”,反之,如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为 \(0\),所以初始时状态的值也就全部为 \(0\) 了。
完全背包
与 01 背包相似,但每种物品有无限件。
\]
可以用滚动数组优化掉第一维,但注意要 顺序 枚举容量以达到“每种物品可以取无限件”的限制。
完全背包的特点是每种物品可选无限件,所以在考虑“加选一件第 \(i\) 种物品”这种策略时,正需要一个可能已选入第 \(i\) 种物品的子结果 \(f(i, j − v_i)\),所以就可以并且必须采用 \(j\) 递增的顺序循环。
for (int i = 1; i <= n; ++ i) {
for (int j = v[i]; j <= m; ++ j) {
f[j] = max(f[j], f[j - v[i]] + w[i];
}
}
多重背包
与 01 背包相似,但每种物品最多取 \(k_i\) 件。
二进制拆分每个物品后跑 01 背包即可。
for (int i = 1; i <= n; ++ i)
{
cin >> a >> b >> m;
for (int j = 1; m - j >= 0; j <<= 1) //二进制拆分优化
{
++ cnt;
v[cnt] = a * j;
w[cnt] = b * j;
m -= j;
}
if (m)
{
++ cnt;
v[cnt] = a * m;
w[cnt] = b * m;
}
}
混合背包
有的物品只有一个,有的物品有无限个,还有的物品有有限个。
缝合怪,把前三种代码缝合起来即可。
二维费用背包
对于每件物品,具有两种不同的费用,选择这件物品必须同时付出这两种费用。对于每种费用都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。
设第 \(i\) 件物品所需的两种费用分别为 \(c_i\) 和 \(v_i\)。两种费用可付出的最大值(也即两种背包容量)分别为 \(C\) 和 \(V\)。物品的价值为 \(w_i\)。
费用加了一维,只需状态也加一维即可。设 \(f(i,j,k)\) 表示前 \(i\) 件物品付出两种费用分别为 \(j\) 和 \(k\) 时可获得的最大价值。状态转移方程就是:
\]
仍然可以滚动数组,按照背包类型确定枚举顺序即可。
有时,“二维费用”的条件是以“最多只能取 U 件物品” 来给出的。这事实上相当于每件物品多了一种“件数”的费用,每个物品的件数费用均为 1,可以付出的最大件数费用为 U。
另一种看待二维背包问题的思路是:将它看待成复整数域上的背包问题。也就是说,背包的容量以及每件物品的费用都是一个复整数。而常见的一维背包问题则是自然数域上的背包问题。所以说,一维背包的种种思想方法,往往可以应用于二位背包问题
的求解中,因为只是数域扩大了而已。
分组背包
有 \(N\) 件物品和一个容量为 \(V\) 的背包。第 \(i\) 件物品的费用是 \(v_i\),价值是 \(w_i\)。这些物品被划分为 \(K\) 组,每组最多选一件物品。
这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。
设 \(f(i,j)\) 表示前 \(f\) 组物品花费费用 \(j\) 能取得的最大权值,则有:
\]
其中 \(k\) 是组 \(i\) 内的一件物品。
for (int i = 1; i <= K; ++ i)
for (int j = V; j >= 0; -- j)
for (int k : group[i])
// 遍历组 i 的每一件物品
if (j - v[k] >= 0)
f[j] = max(f[j], f[j - v[k]] + w[k];
有依赖的背包
其实是树形 DP。
咕咕咕。
泛化物品
在背包容量为 \(V\) 的背包问题中,泛化物品是一个定义域为 \(\{x\in\mathbf{Z} \mid 0\leq x\leq V\}\) 的函数 \(h\),当分配给它的费用为 \(v\) 时,能得到的价值就是 \(h(v)\)。
如果给定了两个泛化物品 \(h\) 和 \(l\),要用一定的费用从这两个泛化物品中得到最大的价值,这个问题怎么求呢?事实上,对于一个给定的费用 \(v\),只需枚举将这个费用如何分配给两个泛化物品就可以了。同样的,对于 \([0,V]\) 中的每一个整数 \(v\),可以求得费用\(v\) 分配到 \(h\) 和 \(l\) 中的最大价值 \(f(v)\)。也即
\]
可以看到,这里的 \(f\) 是一个由泛化物品 \(h\) 和 \(l\) 决定的定义域为 \(\{x\in\mathbf{Z} \mid 0\leq x\leq V\}\) 的函数,也就是说, \(f\) 是一个由泛化物品 \(h\) 和 \(l\) 决定的泛化物品。
本文所有代码均未经过编译。
大部分参考 崔天翼《背包九讲》。
Written with StackEdit.
DP 复习的更多相关文章
- 区间DP复习
区间DP复习 (难度排序:(A,B),(F,G,E,D,H,I,K),(C),(J,L)) 这是一个基本全在bzoj上的复习专题 没有什么可以说的,都是一些基本的dp思想 A [BZOJ1996] [ ...
- 集训DP复习整理
DP复习 集训%你赛2:测绘(审题DP) 经过2000+个小时的努力终于把这道题做出来的蒟蒻通 分析: 这道题我一直没做出来的原因就是因为我太蒟了题面看不懂,题面读懂了,其实不是特别难. 题目翻译: ...
- 状压DP复习
深感自己姿势水平之蒻……一直都不是很会状压DP,NOIP又特别喜欢考,就来复习一发…… 题目来源 Orz sqzmz T1 [BZOJ4197][NOI2015]寿司晚宴 (做过)质因数分解最大的质因 ...
- 状压DP复习笔记
前言 复习笔记第4篇.CSP RP++. 引用部分为总结性内容. 0--P1433 吃奶酪 题目链接 luogu 题意 房间里放着 \(n\) 块奶酪,要把它们都吃掉,问至少要跑多少距离?一开始在 \ ...
- 斜率优化DP复习笔记
前言 复习笔记2nd. Warning:鉴于摆渡车是普及组题目,本文的难度定位在普及+至省选-. 参照洛谷的题目难度评分(不过感觉部分有虚高,提高组建议全部掌握,普及组可以选择性阅读.) 引用部分(如 ...
- 矩阵乘法优化DP复习
前言 最近做毒瘤做多了--联赛难度的东西也该复习复习了. Warning:本文较长,难度分界线在"中场休息"部分,如果只想看普及难度的可以从第五部分直接到注意事项qwq 文中用(比 ...
- 数位DP复习笔记
前言 复习笔记第五篇.(由于某些原因(见下),放到了第六篇后面更新)CSP-S RP++. luogu 的难度评级完全不对,所以换了顺序,换了别的题目.有点乱,见谅.要骂就骂洛谷吧,原因在T2处 由于 ...
- NOIP 考前DP 复习
POJ 2533 最长不降子序列 #include <cstdio> ; int a[Maxn],Pos[Maxn],F[Maxn],n,Ans; inline int Max(int x ...
- 树形DP 复习
树形DP 树形DP:建立在树上的动态规划 一般有两种传递方式:根→叶或叶→根 前者出现在换根DP中,一般操作是求出某一个点的最优解,再通过这一个点推知其他点的最优解. 后者是树形DP的常见形式,一般树 ...
- 数位DP复习小结
转载请注明原文地址http://www.cnblogs.com/LadyLex/p/8490222.html 之前学数位dp的时候底子没打扎实 虚的要死 这次正好有时间……刷了刷之前没做的题目 感觉自 ...
随机推荐
- 即构发布 LCEP 低代码互动平台产品 RoomKit,实现互动房间0代码搭建
2月5日,全球云通讯服务商ZEGO即构科技发布低代码互动平台 LCEP(Low-code Engagement Platform)产品 RoomKit,支持1V1在线课堂.小班课.大班课.视频会议.视 ...
- 图像分割_评价指标_PSNR峰值信噪比和SSIM结构相似度
PSNR psnr是"Peak Signal to Noise Ratio"的缩写,即峰值信噪比,是一种评价图像的客观标准. 为了衡量经过处理后的影像品质,我们通常会参考PSNR值 ...
- C标准库 操作文件
C标准库 操作文件 数据持久化的两种方法:文件和数据库 文本文件和二进制文件 举个例子,写C++的代码,源代码为文本文件.编译出来的可执行文件(.exe)文件是二进制文件 文本文件 以文本的编码(AS ...
- 再见RestTemplate,Spring 6.1新特性:RestClient 了解一下!
在最近发布的Spring 6.1 M2版本中,推出了一个全新的同步HTTP客户端:RestClient.用一句话来让Spring开发者认识RestClient的话:像WebClient一样具备流畅AP ...
- PerfView专题 (第十四篇): 洞察那些 C# 代码中的短命线程
一:背景 1. 讲故事 这篇文章源自于分析一些疑难dump的思考而产生的灵感,在dump分析中经常要寻找的一个答案就是如何找到死亡线程的生前都做了一些什么?参考如下输出: 0:001> !t T ...
- CSP-S复习列表
DP:序列,区间,背包,多维,状压,树型 优化:滚动,单调性,树状数组 数据结构:栈,队,链,deque,priority_queue,vector,set,map 树状数组,分块思想 前缀和,差分思 ...
- Canvas好难,如何让研发低成本实现Web端流程图设计功能
摘要:本文由葡萄城技术团队于博客园原创并首发.转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 前言 相信大家在职场中经常会用到流程图,在互联网行业,绘制流程 ...
- 八 Appium常用方法介绍(转)
由于appium是扩展了Webdriver协议,所以可以使用webdriver提供的方法,比如在处理webview页面,完全可以使用webdriver中的方法.当然在原生应用中,也可以使用. 1.元素 ...
- chrome浏览器插件react devtools、redux devtools,无需安装、解压即可用
react devtools用于调试react代码,可以查看到props.state的值,以及定义的hooks,而redux devtools可以追踪到action的派发.store的变化,两个都是r ...
- vue实现文本复制
一. 下载插件 npm install --save vue-clipboard2 二. main.js import VueClipBoard from 'vue-clipboard2' Vue.u ...