DP 复习
背包
约定使用 \(v_i\) 表示放入第 \(i\) 件物品的花费,\(w_i\) 表示第 \(i\) 件物品的价值,背包容量 \(M\),物品件数 \(N\)。
01 背包
每种物品仅有一件,可以选择放或不放。
设 \(f(i,j)\) 表示前 \(i\) 件物品恰填满容量为 \(j\) 的背包可以获得的最大价值。则其状态转移方程便是:
\]
若放第 \(i\) 件物品,那么问题就转化为“前 \(i-1\) 件物品放入剩下的容量为 \(j-v_i\) 的背包中”,此时能获得的最大价值就是 \(f(i-1,j-v_i)\) 再加上通过放入第 \(i\) 件物品获得的价值 \(w_i\);
如果不放第 \(i\) 件物品,那么问题就转化为“前 \(i - 1\) 件物品放入容量为 \(j\) 的背包中”,价值为 \(f(i-1,j)\)。
可以用滚动数组优化掉第一维,但注意要逆序枚举容量以达到“每种物品只能取一件”的限制。
for (int i = 1; i <= n; ++ i) {
for (int j = m; j >= v[i]; ++ j) {
f[j] = max(f[j], f[j - v[i]] + w[i];
}
}
若要求 恰好装满,则应将 \(f(1\ldots M)\) 初始化为 \(-\infty\),因为如果要求背包恰好装满,那么此时只有容量为 \(0\) 的背包可以在什么也不装且价值为 \(0\) 的情况下被“恰好装满”,反之,如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为 \(0\),所以初始时状态的值也就全部为 \(0\) 了。
完全背包
与 01 背包相似,但每种物品有无限件。
\]
可以用滚动数组优化掉第一维,但注意要 顺序 枚举容量以达到“每种物品可以取无限件”的限制。
完全背包的特点是每种物品可选无限件,所以在考虑“加选一件第 \(i\) 种物品”这种策略时,正需要一个可能已选入第 \(i\) 种物品的子结果 \(f(i, j − v_i)\),所以就可以并且必须采用 \(j\) 递增的顺序循环。
for (int i = 1; i <= n; ++ i) {
for (int j = v[i]; j <= m; ++ j) {
f[j] = max(f[j], f[j - v[i]] + w[i];
}
}
多重背包
与 01 背包相似,但每种物品最多取 \(k_i\) 件。
二进制拆分每个物品后跑 01 背包即可。
for (int i = 1; i <= n; ++ i)
{
cin >> a >> b >> m;
for (int j = 1; m - j >= 0; j <<= 1) //二进制拆分优化
{
++ cnt;
v[cnt] = a * j;
w[cnt] = b * j;
m -= j;
}
if (m)
{
++ cnt;
v[cnt] = a * m;
w[cnt] = b * m;
}
}
混合背包
有的物品只有一个,有的物品有无限个,还有的物品有有限个。
缝合怪,把前三种代码缝合起来即可。
二维费用背包
对于每件物品,具有两种不同的费用,选择这件物品必须同时付出这两种费用。对于每种费用都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。
设第 \(i\) 件物品所需的两种费用分别为 \(c_i\) 和 \(v_i\)。两种费用可付出的最大值(也即两种背包容量)分别为 \(C\) 和 \(V\)。物品的价值为 \(w_i\)。
费用加了一维,只需状态也加一维即可。设 \(f(i,j,k)\) 表示前 \(i\) 件物品付出两种费用分别为 \(j\) 和 \(k\) 时可获得的最大价值。状态转移方程就是:
\]
仍然可以滚动数组,按照背包类型确定枚举顺序即可。
有时,“二维费用”的条件是以“最多只能取 U 件物品” 来给出的。这事实上相当于每件物品多了一种“件数”的费用,每个物品的件数费用均为 1,可以付出的最大件数费用为 U。
另一种看待二维背包问题的思路是:将它看待成复整数域上的背包问题。也就是说,背包的容量以及每件物品的费用都是一个复整数。而常见的一维背包问题则是自然数域上的背包问题。所以说,一维背包的种种思想方法,往往可以应用于二位背包问题
的求解中,因为只是数域扩大了而已。
分组背包
有 \(N\) 件物品和一个容量为 \(V\) 的背包。第 \(i\) 件物品的费用是 \(v_i\),价值是 \(w_i\)。这些物品被划分为 \(K\) 组,每组最多选一件物品。
这个问题变成了每组物品有若干种策略:是选择本组的某一件,还是一件都不选。
设 \(f(i,j)\) 表示前 \(f\) 组物品花费费用 \(j\) 能取得的最大权值,则有:
\]
其中 \(k\) 是组 \(i\) 内的一件物品。
for (int i = 1; i <= K; ++ i)
for (int j = V; j >= 0; -- j)
for (int k : group[i])
// 遍历组 i 的每一件物品
if (j - v[k] >= 0)
f[j] = max(f[j], f[j - v[k]] + w[k];
有依赖的背包
其实是树形 DP。
咕咕咕。
泛化物品
在背包容量为 \(V\) 的背包问题中,泛化物品是一个定义域为 \(\{x\in\mathbf{Z} \mid 0\leq x\leq V\}\) 的函数 \(h\),当分配给它的费用为 \(v\) 时,能得到的价值就是 \(h(v)\)。
如果给定了两个泛化物品 \(h\) 和 \(l\),要用一定的费用从这两个泛化物品中得到最大的价值,这个问题怎么求呢?事实上,对于一个给定的费用 \(v\),只需枚举将这个费用如何分配给两个泛化物品就可以了。同样的,对于 \([0,V]\) 中的每一个整数 \(v\),可以求得费用\(v\) 分配到 \(h\) 和 \(l\) 中的最大价值 \(f(v)\)。也即
\]
可以看到,这里的 \(f\) 是一个由泛化物品 \(h\) 和 \(l\) 决定的定义域为 \(\{x\in\mathbf{Z} \mid 0\leq x\leq V\}\) 的函数,也就是说, \(f\) 是一个由泛化物品 \(h\) 和 \(l\) 决定的泛化物品。
本文所有代码均未经过编译。
大部分参考 崔天翼《背包九讲》。
Written with StackEdit.
DP 复习的更多相关文章
- 区间DP复习
区间DP复习 (难度排序:(A,B),(F,G,E,D,H,I,K),(C),(J,L)) 这是一个基本全在bzoj上的复习专题 没有什么可以说的,都是一些基本的dp思想 A [BZOJ1996] [ ...
- 集训DP复习整理
DP复习 集训%你赛2:测绘(审题DP) 经过2000+个小时的努力终于把这道题做出来的蒟蒻通 分析: 这道题我一直没做出来的原因就是因为我太蒟了题面看不懂,题面读懂了,其实不是特别难. 题目翻译: ...
- 状压DP复习
深感自己姿势水平之蒻……一直都不是很会状压DP,NOIP又特别喜欢考,就来复习一发…… 题目来源 Orz sqzmz T1 [BZOJ4197][NOI2015]寿司晚宴 (做过)质因数分解最大的质因 ...
- 状压DP复习笔记
前言 复习笔记第4篇.CSP RP++. 引用部分为总结性内容. 0--P1433 吃奶酪 题目链接 luogu 题意 房间里放着 \(n\) 块奶酪,要把它们都吃掉,问至少要跑多少距离?一开始在 \ ...
- 斜率优化DP复习笔记
前言 复习笔记2nd. Warning:鉴于摆渡车是普及组题目,本文的难度定位在普及+至省选-. 参照洛谷的题目难度评分(不过感觉部分有虚高,提高组建议全部掌握,普及组可以选择性阅读.) 引用部分(如 ...
- 矩阵乘法优化DP复习
前言 最近做毒瘤做多了--联赛难度的东西也该复习复习了. Warning:本文较长,难度分界线在"中场休息"部分,如果只想看普及难度的可以从第五部分直接到注意事项qwq 文中用(比 ...
- 数位DP复习笔记
前言 复习笔记第五篇.(由于某些原因(见下),放到了第六篇后面更新)CSP-S RP++. luogu 的难度评级完全不对,所以换了顺序,换了别的题目.有点乱,见谅.要骂就骂洛谷吧,原因在T2处 由于 ...
- NOIP 考前DP 复习
POJ 2533 最长不降子序列 #include <cstdio> ; int a[Maxn],Pos[Maxn],F[Maxn],n,Ans; inline int Max(int x ...
- 树形DP 复习
树形DP 树形DP:建立在树上的动态规划 一般有两种传递方式:根→叶或叶→根 前者出现在换根DP中,一般操作是求出某一个点的最优解,再通过这一个点推知其他点的最优解. 后者是树形DP的常见形式,一般树 ...
- 数位DP复习小结
转载请注明原文地址http://www.cnblogs.com/LadyLex/p/8490222.html 之前学数位dp的时候底子没打扎实 虚的要死 这次正好有时间……刷了刷之前没做的题目 感觉自 ...
随机推荐
- 离线安装mysql报错解决方法:/usr/sbin/mysqld: error while loading shared libraries: libaio.so.1: cannot open sha --九五小庞
Linux:centos 7.6 64位 mysql:5.6使用离线方式安装:rpm -ivh --nodeps mysql* ,执行 systemctl start mysqld.service发现 ...
- MAC地址、IP地址与子网———计算机网络
计算机具有强大的功能.除了体现与计算机本身具有的计算能力外,其他的功能大多是基于与其他计算机联网提供的. 然而,计算机之间的联网不是一根网线就能解决嘛? 答案当然是否定的.实际上计算机间的交流过程十分 ...
- 【WALT】WALT入口 update_task_ravg() 代码详解
目录 [WALT]WALT入口 update_task_ravg() 代码详解 代码展示 代码逻辑 ⑴ 判断是否进入 WALT 算法 ⑵ 获取 WALT 算法中上一个窗口的开始时间 ⑶ 如果任务刚初始 ...
- pixel 3xl 编译安卓与内核并烧入全流程(含安卓源码部分编译)
pixel 3xl 编译安卓与内核并烧入全流程(含安卓源码部分编译) 目录 pixel 3xl 编译安卓与内核并烧入全流程(含安卓源码部分编译) 环境搭建 安卓源码下载 一.准备下载环境 1.安装Py ...
- BitLocker加密过程中断断电,能否恢复数据?
BitLocker是Windows系统提供的磁盘加密功能,用户自己可以手动开启.在访问受BitLocker保护的磁盘分区时,需要先提供正确的密码.秘钥或是BEK文件.如果使用BitLocker将系统盘 ...
- CF961E Tufurama题解
我们维护一个存储下标数据的树状数组,先将 \(1\sim n\) 插入树状数组. 用 \(a\) 表示原数组,\(b\) 表示按照 \(a_i\) 排序后的数组. 我们从 \(1\) 开始统计,直到 ...
- 防缓存穿透利器-布隆滤器(BloomFilter)
布隆过滤器 1.布隆过滤器原理 1.1 什么是布隆过滤器 1.2 使用场景 1.3 原理 1.4 布隆过滤器的优缺点 2.实现方式 2.1 初始化skuId的布隆过滤器 2.1.1 RedisCons ...
- Django-4.2博客开发教程:需求分析并确定数据表(四)
前三步已经完成了一个初步流程,从创建项目>应用>数据迁移>访问首页.以下是我整理的基本流程,接下来一步一步完成整个项目. 1.我们的需求: 博客的功能主要分为:网站首页.文章分类.文 ...
- Blazor如何跟随“系统主题”?
1. 前言 跟随系统主题已经是绝大多数App和网站的标配 但是如何在Blazor中跟随系统主题? 只找到Masa Blazor技术团队发的 MAUI + Masa Blazor 开发界面跟随系统主题切 ...
- java 线程等待和唤醒方法
java线程状态变迁图 从图中可以看出Java 线程等待方法是将线程从Runnable状态转换为Waiting状态,Java线程的唤醒方法是将线程从Waiting状态唤醒进入Runnable状态 在J ...