MST

引入

现在有一个连通图,他有\(N\)个节点,\(M\)条边

当我们砍掉一些边时,它会变成一棵树,其剩下的边权之和即为这棵树的权,当剩下的权值最小时,称这棵树为此图的最小生成树,即MST

模版题

大致思路

很容易想到,比起砍掉一些边,选择保留一些边更加容易。我们应该在可选择的范围内应该紧着权值小的边保留。

算法其一:Prim

算法基于贪心的思想

因为要生成一棵树,最后每个节点都要被连接,所以我们可以每次选择一个点并将其连接进来,当如此进行直到每个点都被连接进来时,自然就构建完成了。

实现思路

每次选择能被一条边连到树中的,最近的点。但如果直接这样遍历的话时间复杂度就海了去了。

再仔细思考一下这个算法的实现过程,就会发现他很像dijkstra,所以我们可以尝试像dijkstra一样实现。

定义一个\(dis[]\)数组并初始化为INF[^1],表示每个点连接到树中最小的距离。定义一个\(vis[]\)数组表示这个点是否在树中。

循环执行\(N\)次{

  1. 找到此时不在树中,离树最近的点(可以用堆优化);
  2. 在\(vis[]\)标记;
  3. 遍历以K为起点的边并更新\(dis[]\)的值;

}

废话不多说,直接给出堆优化版代码:

#include<bits/stdc++.h>
using namespace std;
struct edge{
int u,v,w,next;
}mp[1000006];//存边
struct node{
int id,dis;
bool operator<(node rhs)const{//千万记得const
return dis>rhs.dis;
}//因为每次取最小的,所以要用小根堆,把小于重载为大于
};
int n,m;
int top,idx[100005];
int dis[100005];
bool vis[100005];
priority_queue<node>q;
void add(int u,int v,int w){//加边
mp[++top].u=u;
mp[top].v=v;
mp[top].w=w;
mp[top].next=idx[u];
idx[u]=top;
}
int main(){
cin>>n>>m;
for(int i=1;i<=m;i++){
int u,v,w;cin>>u>>v>>w;
add(u,v,w);
add(v,u,w);//双向边
}
memset(dis,0x3f,sizeof(dis));
q.push((node){1,0});
dis[1]=0;//初始化
while(!q.empty()){
int sp=q.top().id;//找到离树最近的点
q.pop();//记得删掉(我绝对没有经常忘)
if(vis[sp])continue;//因为多次往堆里放,所以可能已经在树里
vis[sp]=1;//如果不在,就连到树里,代价为dis[sp]
while(1)cout<<"The plagiarist is shameful";
//自己翻译
for(int i=idx[sp];i!=0;i=mp[i].next){
//如果不判断是否已经在树中dis的值可能会改变,不影响算法但最后统计代价的时候会麻烦
//注意,dis[]表示的是到树的距离,此时点sp已经在树中,所以直接和边长比较而不要加上dis[sp]
if(!vis[mp[i].v]&&dis[mp[i].v]>mp[i].w){
dis[mp[i].v]=mp[i].w;
q.push((node){mp[i].v,dis[mp[i].v]});
} //一种写法,可以压行
}
}
int ans=0;
for(int i=1;i<=n;i++)
if(dis[i]>1e9){//如果还有没被更新的说明
cout<<"orz";//,也就是说以一为起点走不到这个点,说明不连通
return 0;
}else
ans+=dis[i];
cout<<ans;//统计总花费
return 0;
}

算法其二:Kruskal

(前置技能:并查集基础

如果说上面的Prim是从点的角度来考虑,尽量每次都选代价最小的点;那么Kruskal就是从边的角度来考虑,每次都考虑权值最小的边。

基本思路大致是每次都找出还没考虑过的、权值最小的边,如果他的两端之前没有被联通,就加入这条边,然后将两端所在集合连接。

但别忘了,我们要运行\(m\)次,每次找到最小的边,再跑一遍搜索,最坏情况下时间复杂度甚至会飞升到恐怖的\(O[m\cdot (m+n)]\)(两层\(m\)循环加上最坏情况下可能每次都要跑一遍\(O(n)\)搜索),再看一眼模板的数据范围:

很显然,这种复杂度想都不用想,直接寄。别说O2了,就算O\(^2\)来了都救不了。那我们该如何优化呢?

这个时候就轮到并查集出马了,关于基本并查集这里不再赘述,如果还不会就去看看看这里

如果我们用上带路径压缩的并查集,那么时间复杂度将大幅减少到近似\(O(m^2)\)。

再回想一下整个过程,我们是不是只用到了每条边的两端点和长度,根本就没有搜索或者遍历这个点发出的每一条边?

这样的话我们甚至可以只保留最基本的边集数组,然后将它按照长度排序,这样就又减少了一层循环,总体的时间复杂度就进化到了排序的\(O(mlogm)\)。

直接上代码:

#include <bits/stdc++.h>
using namespace std;
struct edge{
int u,v,w;
}mp[200005];//只使用边集数组存边就行
int n,m,ans,cnt;
int f[5003];
bool cmp(edge lhs,edge rhs){//sort用的比较函数
return lhs.w<rhs.w;
}
int root(int x){//并查集找根函数
if(f[x]==0)return x;
return f[x]=root(f[x]);
}
int main(){
cin>>n>>m;
for(int i=1;i<=m;i++)
cin>>mp[i].u>>mp[i].v>>mp[i].w;
sort(mp,mp+1+m,cmp);//排序
for(int i=1;i<=m;i++){
if(root(mp[i].u)==root(mp[i].v))
continue;//如果之前这两端已经被联通,那再加入这条边就会形成环,就不再是树了
cnt++;//统计选择了几条边
ans+=mp[i].w;//统计代价
f[root(mp[i].u)]=root(mp[i].v);
if(cnt==n-1)
break;//如果已经用了n-1条边就已经是一棵树了,不需要再往后考虑
}
if(cnt<n-1)//连n-1条边都没有说明不连通
cout<<"orz";
else
cout<<ans;
return 0;
}

最小生成树(Prim、Kruskal)的更多相关文章

  1. 最小生成树 Prim Kruskal

    layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...

  2. 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...

  3. 数据结构学习笔记05图(最小生成树 Prim Kruskal)

    最小生成树Minimum Spanning Tree 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 树: 无回路   |V|个顶 ...

  4. 布线问题 最小生成树 prim + kruskal

    1 : 第一种 prime     首先确定一个点 作为已经确定的集合 , 然后以这个点为中心 , 向没有被收录的点 , 找最短距离( 到已经确定的点 ) , 找一个已知长度的最小长度的 边 加到 s ...

  5. POJ 1258 Agri-Net(最小生成树 Prim+Kruskal)

    题目链接: 传送门 Agri-Net Time Limit: 1000MS     Memory Limit: 10000K Description Farmer John has been elec ...

  6. 最小生成树-Prim&Kruskal

    Prim算法 算法步骤 S:当前已经在联通块中的所有点的集合 1. dist[i] = inf 2. for n 次 t<-S外离S最近的点 利用t更新S外点到S的距离 st[t] = true ...

  7. 邻接表c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)

    graph.c #include <stdio.h> #include <stdlib.h> #include <limits.h> #include " ...

  8. poj1861 最小生成树 prim &amp; kruskal

    // poj1861 最小生成树 prim & kruskal // // 一个水题,为的仅仅是回味一下模板.日后好有个照顾不是 #include <cstdio> #includ ...

  9. 最小生成树---Prim算法和Kruskal算法

    Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...

  10. 最小生成树(prim&kruskal)

    最近都是图,为了防止几次记不住,先把自己理解的写下来,有问题继续改.先把算法过程记下来: prime算法:                  原始的加权连通图——————D被选作起点,选与之相连的权值 ...

随机推荐

  1. 数仓备份经验分享丨详解roach备份原理及问题处理套路

    本文分享自华为云社区<GaussDB(DWS) 备份问题定位思路>,作者: yd_216390446. 前言 在数据库系统中,故障分为事务内部故障.系统故障.介质(磁盘)故障.对于事务内部 ...

  2. 如何用PHP写接口

    当用PHP编写API接口时,可以使用PHP中的框架(如Laravel.Symfony.CodeIgniter等)来简化开发过程.接下来,以使用Laravel框架为例,提供一个简单的示例代码: 首先,确 ...

  3. API接口设计规范

    说明:在实际的业务中,难免会跟第三方系统进行数据的交互与传递,那么如何保证数据在传输过程中的安全呢(防窃取)?除了https的协议之外,能不能加上通用的一套算法以及规范来保证传输的安全性呢? 下面我们 ...

  4. 以程序员为视角,关于商品详情API接口的说明

    ​ 商品详情API接口是现代电商平台中非常重要的一部分,它提供了获取淘宝商品详细信息的能力.作为一个程序员,了解如何调用这个API接口是非常关键的. 首先,我们需要明确的是,API接口是应用程序与服务 ...

  5. C++笔记(自用)

    <Effective C++> 条款11 在operator=中处理"自我赋值" 自我赋值 证同测试: if(this==&rhs)return*this; 影 ...

  6. 《Hadoop大数据技术开发实战》新书上线

    当今互联网已进入大数据时代,大数据技术已广泛应用于金融.医疗.教育.电信.政府等领域.各行各业每天都在产生大量的数据,数据计量单位已从B.KB.MB.GB.TB发展到PB.EB.ZB.YB甚至BB.N ...

  7. 响应式编程——初识 Flux 和 Mono

    by emanjusaka from ​ https://www.emanjusaka.top/archives/4 彼岸花开可奈何 本文欢迎分享与聚合,全文转载请留下原文地址. 前言 Reactor ...

  8. redhat7 team bonding 双网卡绑定 主备 负载均衡

    team简介 team也被称为网络组,是将多个网卡聚合在一起,从而实现冗错和提高吞吐量.适用于redhat7.0以上版本,至多可支持8块网卡.team相对于之前的bonding技术,能提供更好的性能和 ...

  9. signalr断开连接后重新连接

    signalr断开连接后重新连接 产品需求连接signalr 不稳定,连着连着就断了,场面十分尴尬,导致产品经理现场被批!!(内心无比高兴 ) 分析得出问题现象: 服务器因某些特殊原因,导致服务停止一 ...

  10. MySQL-通过存储过程来添加和删除分区(List分区)

    1.背景原因 当前MySQL不支持在添加和删除分区时,使用IF NOT EXISTS和IF EXISTS.所以在执行调度任务时,直接通过ADD PARTITION和DROP PARTITION不可避免 ...