题目


分析

如果是序列(\(k=1\))也就是积木大赛

那也就是\(\sum_{i=1}^n\max\{a_i-a_{i-1},0\}\)

那关键就是要处理与父节点之间的关系,如果父节点的值小于该节点的值才能产生贡献,

那么用树状数组维护小于该节点的值的父节点的个数及权值和,并用双指针删除不合法的父节点即可


代码

#include <cstdio>
#include <cctype>
#include <algorithm>
#define rr register
using namespace std;
const int N=1000011,mod=998244353;
int c[N],C[N],a[N],b[N],inv[N],n,TOT,m,ans;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
inline void add(int x,int y,int z){
for (;x<=TOT;x+=-x&x) c[x]=mo(c[x],y),C[x]+=z;
}
inline signed query(int x,int &t){
rr int ans=0; t=0;
for (;x;x-=-x&x)
ans=mo(ans,c[x]),t+=C[x];
return ans;
}
signed main(){
n=iut(),m=iut(),inv[0]=inv[1]=1;
for (rr int i=2;i<=n;++i)
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for (rr int i=1;i<=n;++i) b[i]=a[i]=iut();
sort(b+1,b+1+n),TOT=unique(b+1,b+1+n)-b-1;
for (rr int i=1;i<=n;++i)
a[i]=lower_bound(b+1,b+1+TOT,a[i])-b;
add(a[1],ans=b[a[1]],1);
for (rr int i=2,j=1;i<=n;++i){
for (;j<i-m;add(a[j],mod-b[a[j]],-1),++j);
rr int CNT,NOW=query(a[i],CNT);
ans=mo(ans,1ll*mo(1ll*b[a[i]]*CNT%mod,mod-NOW)*inv[i-j]%mod);
add(a[i],b[a[i]],1);
}
return !printf("%d",ans);
}

#树状数组,概率,离散,双指针#洛谷 6834 [Cnoi2020]梦原的更多相关文章

  1. [BZOJ4785][ZJOI2017]树状数组(概率+二维线段树)

    4785: [Zjoi2017]树状数组 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 297  Solved: 195[Submit][Status ...

  2. HDU 6447 YJJ’s Salesman (树状数组 + DP + 离散)

    题意: 二维平面上N个点,从(0,0)出发到(1e9,1e9),每次只能往右,上,右上三个方向移动, 该N个点只有从它的左下方格点可达,此时可获得收益.求该过程最大收益. 分析:我们很容易就可以想到用 ...

  3. codeforce-191E-Thwarting Demonstrations(树状数组+二分+离散)

    题意: 求第K 大连续区间 分析: 二分答案,再n * log(n)判断有几个区间的区间和大于mid,然后调整上下界,使这个值不断的接近k. 判断符合条件的区间总数:线性扫描sum[n](前n项和) ...

  4. c++ 树状数组

    关于树状数组 树状数组,即 Binary Indexed Tree ,主要用于维护查询前缀和 属于 log 型数据结构 和线段树比较 都是 log 级别 树状数组常数.耗费的空间.代码量都比线段树小 ...

  5. HDU5877 Weak Pair dfs + 线段树/树状数组 + 离散化

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5877 题意: weak pair的要求: 1.u是v的祖先(注意不一定是父亲) 2.val[u]*va ...

  6. P1908 逆序对-(树状数组)

    https://www.luogu.org/problem/P1908 比较喜欢线段树,懒得用树状数组(只会套模板,位运算的精髓没有领悟到),一直没有记录树状数组代码,又得捡回来,趁这道题记录一下模板 ...

  7. [NOIP2013提高&洛谷P1966]火柴排队 题解(树状数组求逆序对)

    [NOIP2013提高&洛谷P1966]火柴排队 Description 涵涵有两盒火柴,每盒装有 n 根火柴,每根火柴都有一个高度. 现在将每盒中的火柴各自排成一列, 同一列火柴的高度互不相 ...

  8. [NOI导刊2010提高&洛谷P1774]最接近神的人 题解(树状数组求逆序对)

    [NOI导刊2010提高&洛谷P1774]最接近神的人 Description 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某 ...

  9. 洛谷P3688/uoj#291. [ZJOI2017]树状数组

    传送门(uoj) 传送门(洛谷) 这里是题解以及我的卡常数历程 话说后面那几组数据莫不是lxl出的这么毒 首先不难发现这个东西把查询前缀和变成了查询后缀和,结果就是查了\([l-1,r-1]\)的区间 ...

  10. 洛谷P2617 Dynamic Ranking(主席树,树套树,树状数组)

    洛谷题目传送门 YCB巨佬对此题有详细的讲解.%YCB%请点这里 思路分析 不能套用静态主席树的方法了.因为的\(N\)个线段树相互纠缠,一旦改了一个点,整个主席树统统都要改一遍...... 话说我真 ...

随机推荐

  1. Redis居然还有比RDB和AOF更强大的持久化方式?

    https://cloud.tencent.com/developer/article/1786055

  2. auth模块的一些方法

    auth模块 auth模块是cookie和session的升级版,auth模块是对登录认证方法的一种封装,之前我们获取用户输入的用户名及密码后需要自己从user表里查询有没有用户名和密码符合的对象,而 ...

  3. JVM类的加载和加载器

    JVM类的加载和类的加载器 一.类的加载过程 类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区内,然后在堆区创建一个java.lang.Class对象,用来 ...

  4. springboot-@Async默认线程池导致OOM问题

    目录 内存溢出的三种类型: 初步分析: 代码分析: 最终解决办法: 内存溢出的三种类型: 第一种OutOfMemoryError: PermGen space,发生这种问题的原意是程序中使用了大量的j ...

  5. macOS安装RZ,SZ

    使用brew 安装lrzsz sudo brew install lrzsz 安装完成后检查是否存在. ls -alh /usr/local/bin/sz 如果安装报错可以手动下载压缩包安装,安装地址 ...

  6. 【Flink入门修炼】2-1 Flink 四大基石

    前一章我们对 Flink 进行了总体的介绍.对 Flink 是什么.能做什么.入门 demo.架构等进行了讲解. 本章我们将学习 Flink 重点概念.核心特性等. 本篇对 Flink 四大基石进行概 ...

  7. opencv库图像基础4绘图-python

    opencv库图像基础4绘图-python 1.绘画线条和简单图形 创建颜色字典和一个画布 import cv2 import numpy as np import matplotlib.pyplot ...

  8. Nginx-web系列

    nginx 系列 目录 nginx 系列 一 简述 1.1 为什么要使用? 1.2 主要用于哪里? 二. Nginx 搭建环境 2.1 版本选择 2.2 环境准备 2.2 yum 直装 2.3 ngi ...

  9. 开源K线图辅助线编辑工具模块

    基本就像使用photoshop一样,同一DC上应用叠加图像. 辅助线模块,提供浮动工具条,以及两层Layer,附加在DC上,交互处理DC对应窗口区域的鼠标事件,时间轴价格轴与x轴y轴坐标转换. XW全 ...

  10. TTS 擂台: 文本转语音模型的自由搏击场

    对文本转语音 (text-to-speech, TTS) 模型的质量进行自动度量非常困难.虽然评估声音的自然度和语调变化对人类来说是一项微不足道的任务,但对人工智能来说要困难得多.为了推进这一领域的发 ...