Link

简要题意:称一个长为 \(2^n-1\) 的排列 \(P\) 像堆,如果 \(P_i \lt P_{2i}\),且 \(P_i \lt P_{2i+1}\)。给定 \(a,b\),设 \(u=2^a,v=2^{b+1}-1\),在所有像堆的排列中任取一个,求 \(P_u \lt P_v\) 的概率。

既然这个排列像堆,那就把这个问题放在满二叉树上解决。结点 \(i\) 的权值是 \(P_i\),子结点是 \(2i\) 和 \(2i+1\)。

首先,如果把结点编号,然后按照权值排列,那么就是对这棵满二叉树做了一次拓扑排序,这里父结点向子结点连有向边。那么,我们只需要考虑结点的一个排列 \(S\),使得 \(i\) 在其子树的前面。

题目中给定的 \(u,v\) 分别是第 \(a+1\) 层最左边的结点和第 \(b+1\) 层最右边的结点。而题目要求的 \(P_u \lt P_v\) 可以看作是从 \(u\) 向 \(v\) 连了一条有向边,或者说 \(S\) 中 \(u\) 必须在 \(v\) 前面。(下面的叙述中,涉及树的概念都是没有考虑这条边的)

这个拓扑序的开头当然是 \(1\),然后整个图被分成了两棵满二叉树,从一棵的某个点向另一棵的某个点连边。

接下来,当然是选择一棵树的根结点。然后,这棵树又被分成了两棵树,其中有一棵是不含 \(u,v\) 之一的。那么,在安排好剩下的两棵树之后,将这棵树随意插入已有的排列即可。

想到这里,一个 DP 的方式呼之欲出:设 \(dp_{i,j}\) 表示剩下一棵 \(i\) 层的满二叉树和一棵 \(j\) 层的满二叉树的方案数,则 \(dp_{i,j}\) 会从 \(dp_{i-1,j}\) 和 \(dp_{i,j-1}\) 转移而来。注意,由于 \(u,v\) 距离叶子层的深度是不变的,所以这样的状态定义已经足够。再用 \(f_{i,j}\) 表示相应的概率。

我们还需要考虑一个普通的 \(i\) 层满二叉树的拓扑序总数。设为 \(S_i\)。

先求 \(S_i\) 的递推式。第一步是选择根结点,然后是将两棵子树的所有排列方式放入拓扑序中。所有排列有 \(S_{i-1}^2\) 种。每棵子树的拓扑序长度为 \(2^{i-1}-1\),所以插入的方式有 \(C_{2^i-2}^{2^{i-1}-1}\) 种。于是

\[S_i=S_{i-1}^2 \times C_{2^i-2}^{2^{i-1}-1}
\]

设 \(u,v\) 分别在倒数第 \(A,B\) 层,则 DP 的初始值为 \(f_{A-1,j}=1\) 对 \(j \ge B\) 成立。

与前面类似可得 \(dp_{i,j}\) 的递推式为:

\[dp_{i,j}=dp_{i-1,j} \times S_{i-1} \times C_{2^i+2^j-3}^{2^{i-1}-1}+dp_{i,j-1} \times S_{j-1} \times C_{2^i+2^j-3}^{2^{j-1}-1}
\]

又由于

\[f_{i,j}=\frac{dp_{i,j}}{S_i \times S_j \times C_{2^i+2^j-2}^{2^i-1}}
\]

所以

\[f_{i,j}=\frac{dp_{i-1,j} \times S_{i-1} \times C_{2^i+2^j-3}^{2^{i-1}-1}+dp_{i,j-1} \times S_{j-1} \times C_{2^i+2^j-3}^{2^{j-1}-1}}{S_i \times S_j \times C_{2^i+2^j-2}^{2^i-1}}
\]
\[=\frac{f_{i-1,j} \times S_{i-1}^2 \times S_j \times C_{2^{i-1}+2^j-2}^{2^{i-1}-1} \times C_{2^i+2^j-3}^{2^{i-1}-1}}{S_i \times S_j \times C_{2^i+2^j-2}^{2^i-1}}+\frac{f_{i,j-1} \times S_{j-1}^2 \times S_i \times C_{2^i+2^{j-1}-2}^{2^{j-1}-1} \times C_{2^i+2^j-3}^{2^{j-1}-1}}{S_i \times S_j \times C_{2^i+2^j-2}^{2^j-1}}
\]
\[=f_{i-1,j} \times \frac{C_{2^{i-1}+2^j-2}^{2^{i-1}-1} \times C_{2^i+2^j-3}^{2^{i-1}-1}}{C_{2^i-2}^{2^{i-1}-1} \times C_{2^i+2^j-2}^{2^i-1}}+f_{i,j-1} \times \frac{C_{2^i+2^{j-1}-2}^{2^{j-1}-1} \times C_{2^i+2^j-3}^{2^{j-1}-1}}{C_{2^j-2}^{2^{j-1}-1} \times C_{2^i+2^j-2}^{2^j-1}}
\]

结合

\[\frac{C_{2^{i-1}+2^j-2}^{2^{i-1}-1} \times C_{2^i+2^j-3}^{2^{i-1}-1}}{C_{2^i-2}^{2^{i-1}-1} \times C_{2^i+2^j-2}^{2^i-1}}
\]
\[=\frac{\frac{(2^{i-1}+2^j-2)!\times(2^i+2^j-3)!}{(2^{i-1}-1)!\times(2^j-1)!\times(2^{i-1}-1)!\times(2^{i-1}+2^j-2)!}}{\frac{(2^i-2)!\times(2^i+2^j-2)!}{(2^{i-1}-1)!\times(2^{i-1}-1)!\times(2^i-1)!\times(2^j-1)!}}
\]
\[=\frac{(2^i+2^j-3)!\times(2^i-1)!}{(2^i+2^j-2)!\times(2^i-2)!}
\]
\[=\frac{2^i-1}{2^i+2^j-2}
\]

最后我们得到了一个漂亮的表达式:

\[f_{i,j}=f_{i-1,j}\times\frac{2^i-1}{2^i+2^j-2}+f_{i,j-1}\times\frac{2^j-1}{2^i+2^j-2}
\]

答案是 \(f_{n-1,n-1}\)。

Code:

#include<bits/stdc++.h>
using namespace std;
const int N=5005,mod=998244353;
int n,A,B;
long long pwr2[N],p[N][N],f[N][N];
int power(int a,int b){
int c=1;
for(;b;b>>=1){
if(b&1)c=1ll*c*a%mod;
a=1ll*a*a%mod;
}
return c;
}
int main(){
scanf("%d%d%d",&n,&A,&B);
A=n-A;B=n-B;
for(int i=1;i<=n;i++)pwr2[i]=power(2,i);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
p[i][j]=(pwr2[i]-1)*power(pwr2[i]+pwr2[j]-2,mod-2)%mod;
for(int i=B;i<=n;i++)f[A-1][i]=1;
for(int i=A;i<=n;i++)
for(int j=B;j<=n;j++)
f[i][j]=(f[i-1][j]*p[i][j]%mod+f[i][j-1]*p[j][i]%mod)%mod;
printf("%d\n",f[n-1][n-1]);
return 0;
}

Solution - AGC060C的更多相关文章

  1. Enterprise Solution 3.1 企业应用开发框架 .NET ERP/CRM/MIS 开发框架,C/S架构,SQL Server + ORM(LLBL Gen Pro) + Infragistics WinForms

    行业:基于数据库的制造行业管理软件,包含ERP.MRP.CRM.MIS.MES等企业管理软件 数据库平台:SQL Server 2005或以上 系统架构:C/S 开发技术 序号 领域 技术 1 数据库 ...

  2. Enterprise Solution 开源项目资源汇总 Visual Studio Online 源代码托管 企业管理软件开发框架

    Enterprise Solution 是一套管理软件开发框架,在这个框架基础上开发出一套企业资源计划系统Enterprise Edition. 现将Enterprise Solution开发过程中遇 ...

  3. Windows 10 部署Enterprise Solution 5.5

    Windows 10正式版发布以后,新操作系统带来了许多的变化.现在新购买的电脑安装的系统应该是Windows 10.与当初用户不习惯Windows 7,购买新电脑后第一个想做的事情就是重装成XP,估 ...

  4. Enterprise Solution 企业资源计划管理软件 C/S架构,支持64位系统,企业全面应用集成,制造业信息化

    Enterprise Solution是一套完整的企业资源计划系统,功能符合众多制造业客户要求.系统以.NET Framework技术作为开发架构,完善的功能可有效地帮助企业进行运营策划,减低成本,如 ...

  5. Dynamics CRM 2015-超大Solution导入问题

    我们在将比较大的solution导入CRM的时候,经常会遇到超时的问题,这是因为CRM的本身的优化限制导致的,那么如何解决呢? 官方已经有了解决方案了. 在浏览完两种解决方法之后,我们要知道的是: 1 ...

  6. WATERHAMMER: A COMPLEX PHENOMENON WITH A SIMPLE SOLUTION

    开启阅读模式 WATERHAMMER A COMPLEX PHENOMENON WITH A SIMPLE SOLUTION Waterhammer is an impact load that is ...

  7. Codility NumberSolitaire Solution

    1.题目: A game for one player is played on a board consisting of N consecutive squares, numbered from ...

  8. codility flags solution

    How to solve this HARD issue 1. Problem: A non-empty zero-indexed array A consisting of N integers i ...

  9. The Solution of UESTC 2016 Summer Training #1 Div.2 Problem C

    Link http://acm.hust.edu.cn/vjudge/contest/121539#problem/C Description standard input/output After ...

  10. The Solution of UESTC 2016 Summer Training #1 Div.2 Problem B

    Link http://acm.hust.edu.cn/vjudge/contest/121539#problem/B Description standard input/output Althou ...

随机推荐

  1. C#人脸对比服务(基于虹软人脸识别SDKV4.1封装)

    软件截图   项目截图 部分代码 using System; using System.Collections.Generic; using System.Linq; using System.Tex ...

  2. KingabseES 构造常量数据表的方式 union, values, array

    背景 通用报表系统中,如果过滤条件是多选数据项,需要动态构造虚拟数据表,这里也会成为查询性能的痛点. 构造方式与执行计划 构造1000行数据的虚拟表. SQL UNION 组合多个查询的结果,需要解析 ...

  3. stm32F103 移植Free RTOS

    stm32F103 移植Free RTOS 1. 下载FreeRTOS 源码 [官网下载] (http://www.freertos.org) [代码托管网站下载] (https://sourcefo ...

  4. C++ atomic

    atomic 每个 std::atomic 模板的实例化和全特化定义一个原子类型.若一个线程写入原子对象,同时另一线程从它读取,则行为良好定义. 另外,对原子对象的访问可以建立线程间同步,并按 std ...

  5. #线段树#洛谷 4681 [THUSC2015]平方运算

    题目 给定一个数列 \(a\),维护以下两种操作 区间取平方 \(a[i]=a[i]^2\bmod p\) 区间和(不取模) \(p\) 为给定的小于 \(10^4\) 的数,\(n\leq 10^5 ...

  6. .NET 8使用日志功能以及自定义日志提供程序

    .NET 8使用日志功能以及自定义日志提供程序 日志级别 下表列出了 LogLevel 值.方便的 Log{LogLevel} 扩展方法以及建议的用法: 展开表 LogLevel "值&qu ...

  7. 面试必备HashMap源码解析

    Map的实现有很多种,而HashMap算是最经典的实现之一了吧,在平时的使用中,绝大部分的使用也都是HashMap,我记得刚入行那会,脑子里对Map的使用就是Map map = new HashMap ...

  8. 【直播合集】HDC.Together 2023 精彩回顾!收藏勿错过~

    HDC.Together 2023 主题演讲 万象复兴,热潮澎湃,HarmonyOS 全面进化,迈入新纪元.以创新改变世界,以生态驱动未来.扬帆起航,就在此刻.新版本.新体验.新流量.新商业.新机遇. ...

  9. wireshark 抓包整理———— 从一个小案例开始 [一]

    前言 前面已经有抓包系列了,简单写一下wireshark的抓包系列,共36节,18个理论小栗子,36个实战栗子. 正文 这个例子是<<wireshark 分析就这么简单>>的一 ...

  10. pageSpy - 远程调试利器

    视频版: https://www.bilibili.com/video/BV1Zi4y167TZ 前言 在工作中, 经常需要面对的问题就是处理客户提出的bug. 但是这个事儿最耗费精力甚至决定能不能修 ...