应用场景:

搜索引擎会通过日志文件把用户每次检索使用的所有检索串都记录下来,每个查询串的长度为1-255字节。
        假设目前有一千万个记录(这些查询串的重复度比较高,虽然总数是1千万,但如果除去重复后,不超过3百万个。一个查询串的重复度越高,说明查询它的用户越多,也就是越热门。),请你统计最热门的10个查询串,要求使用的内存不能超过1G。

问题解析:

要统计最热门查询,首先就是要统计每个Query出现的次数,然后根据统计结果,找出Top 10。所以我们可以基于这个思路分两步来设计该算法。

即,此问题的解决分为以下俩个步骤:

第一步:Query统计              (统计出每个Query出现的次数)

Query统计有以下俩个方法,可供选择:
        1、直接排序法                  (经常在日志文件中统计时,使用cat file|format key|sort | uniq -c | sort -nr | head -n 10,就是这种方法)
        首先我们最先想到的的算法就是排序了,首先对这个日志里面的所有Query都进行排序,然后再遍历排好序的Query,统计每个Query出现的次数了。

但是题目中有明确要求,那就是内存不能超过1G,一千万条记录,每条记录是255Byte,很显然要占据2.375G内存,这个条件就不满足要求了。

让我们回忆一下数据结构课程上的内容,当数据量比较大而且内存无法装下的时候,我们可以采用外排序的方法来进行排序,这里我们可以采用归并排序,因为归并排序有一个比较好的时间复杂度O(NlgN)。

排完序之后我们再对已经有序的Query文件进行遍历,统计每个Query出现的次数,再次写入文件中。

综合分析一下,排序的时间复杂度是O(NlgN),而遍历的时间复杂度是O(N),因此该算法的总体时间复杂度就是O(N+NlgN)=O(NlgN)。

2、Hash Table法                (这种方法统计字符串出现的次数非常好)
       在第1个方法中,我们采用了排序的办法来统计每个Query出现的次数,时间复杂度是NlgN,那么能不能有更好的方法来存储,而时间复杂度更低呢?

题目中说明了,虽然有一千万个Query,但是由于重复度比较高,因此事实上只有300万的Query,每个Query 255Byte,因此我们可以考虑把他们都放进内存中去,而现在只是需要一个合适的数据结构,在这里,Hash Table绝对是我们优先的选择,因为Hash Table的查询速度非常的快,几乎是O(1)的时间复杂度。

那么,我们的算法就有了:

维护一个Key为Query字串,Value为该Query出现次数的HashTable,每次读取一个Query,如果该字串不在Table中,那么加入该字串,并且将Value值设为1;如果该字串在Table中,那么将该字串的计数加一即可。最终我们在O(N)的时间复杂度内完成了对该海量数据的处理。

本方法相比算法1:在时间复杂度上提高了一个数量级,为O(N),但不仅仅是时间复杂度上的优化,该方法只需要IO数据文件一次,而算法1的IO次数较多的,因此该算法2比算法1在工程上有更好的可操作性。

第二步:找出Top 10          (找出出现次数最多的10个)

算法一:普通排序             (我们只用找出top10,所以全部排序有冗余)
     我想对于排序算法大家都已经不陌生了,这里不在赘述,我们要注意的是排序算法的时间复杂度是NlgN,在本题目中,三百万条记录,用1G内存是可以存下的。

算法二:部分排序         
     题目要求是求出Top 10,因此我们没有必要对所有的Query都进行排序,我们只需要维护一个10个大小的数组,初始化放入10个Query,按照每个Query的统计次数由大到小排序,然后遍历这300万条记录,每读一条记录就和数组最后一个Query对比,如果小于这个Query,那么继续遍历,否则,将数组中最后一条数据淘汰(还是要放在合适的位置,保持有序),加入当前的Query。最后当所有的数据都遍历完毕之后,那么这个数组中的10个Query便是我们要找的Top10了。

不难分析出,这样,算法的最坏时间复杂度是N*K, 其中K是指top多少。

算法三:堆
       在算法二中,我们已经将时间复杂度由NlogN优化到N*K,不得不说这是一个比较大的改进了,可是有没有更好的办法呢?

分析一下,在算法二中,每次比较完成之后,需要的操作复杂度都是K,因为要把元素插入到一个线性表之中,而且采用的是顺序比较。这里我们注意一下,该数组是有序的,一次我们每次查找的时候可以采用二分的方法查找,这样操作的复杂度就降到了logK,可是,随之而来的问题就是数据移动,因为移动数据次数增多了。不过,这个算法还是比算法二有了改进。

基于以上的分析,我们想想,有没有一种既能快速查找,又能快速移动元素的数据结构呢?

回答是肯定的,那就是堆。
       借助堆结构,我们可以在log量级的时间内查找和调整/移动。因此到这里,我们的算法可以改进为这样,维护一个K(该题目中是10)大小的小根堆,然后遍历300万的Query,分别和根元素进行对比。

思想与上述算法二一致,只是在算法三,我们采用了最小堆这种数据结构代替数组,把查找目标元素的时间复杂度有O(K)降到了O(logK)。
       那么这样,采用堆数据结构,算法三,最终的时间复杂度就降到了N*logK,和算法二相比,又有了比较大的改进。

总结:

至此,算法就完全结束了,经过上述第一步、先用Hash表统计每个Query出现的次数,O(N);然后第二步、采用堆数据结构找出Top 10,N*O(logK)。所以,我们最终的时间复杂度是:O(N) + N'*O(logK)。(N为1000万,N’为300万)。

注:

当文件特别大而内存有限制时,可以将文件切片,分别处理小文件的top K问题,最终合并结果。

Top K算法的更多相关文章

  1. 程序员编程艺术:第三章续、Top K算法问题的实现

    程序员编程艺术:第三章续.Top K算法问题的实现 作者:July,zhouzhenren,yansha.     致谢:微软100题实现组,狂想曲创作组.     时间:2011年05月08日    ...

  2. hihoCoder 1133 二分·二分查找之k小数(TOP K算法)

    #1133 : 二分·二分查找之k小数 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在上一回里我们知道Nettle在玩<艦これ>,Nettle的镇守府有很 ...

  3. 使用堆实现Top K 算法 JS 实现

    1. 堆算法Top,时间复杂度 O(LogN) function top(arr,comp){ if(arr.length == 0){return ;} var i = arr.length / 2 ...

  4. Top K 算法详解

    http://xingyunbaijunwei.blog.163.com/blog/static/7653806720111149318357/ 问题描述         百度面试题:        ...

  5. top k 算法

    对于一个非有序的数组A[p..r],求数组中第k小的元素. 如何考虑 排序(部分排序)就不用说了..o(nlgn),当然如果在实际情况中要一直取值,当然要排序后,一次搞定,以后都是O(1) 我们这里提 ...

  6. 百度面试题——top K算法

    需求 从一亿个数据中,找出其中最小的10个数. 分析 最笨的方法就是将这一亿个数据,按从小到大进行排序,然后取前10个.这样的话,即使使用时间复杂度为nlogn的快排或堆排,由于元素会频繁的移动,效率 ...

  7. 百度面试题——top K算法

    需求 从一亿个数据中,找出其中最小的10个数. 分析 最笨的方法就是将这一亿个数据,按从小到大进行排序,然后取前10个.这样的话,即使使用时间复杂度为nlogn的快排或堆排,由于元素会频繁的移动,效率 ...

  8. Top K问题-BFPRT算法、Parition算法

    BFPRT算法原理 在BFPTR算法中,仅仅是改变了快速排序Partion中的pivot值的选取,在快速排序中,我们始终选择第一个元素或者最后一个元素作为pivot,而在BFPTR算法中,每次选择五分 ...

  9. 优先队列PriorityQueue实现 大小根堆 解决top k 问题

    转载:https://www.cnblogs.com/lifegoesonitself/p/3391741.html PriorityQueue是从JDK1.5开始提供的新的数据结构接口,它是一种基于 ...

随机推荐

  1. Mac 配置多jdk 随意切换

    1下载安装 jdk6:https://support.apple.com/kb/DL1572?locale=zh_CN 2配置环境变量 open .bash_profile export PATH=$ ...

  2. SpringBoot 自定义线程池

    本教程目录: 自定义线程池 配置spring默认的线程池 1. 自定义线程池 1.1 修改application.properties task.pool.corePoolSize=20 task.p ...

  3. ASP.NET Web Pages:WebMail 帮助器

    ylbtech-.Net-ASP.NET Web Pages:WebMail 帮助器 1.返回顶部 1. ASP.NET Web Pages - WebMail 帮助器 WebMail 帮助器 - 众 ...

  4. 搭建OpenStack先电云平台

    实际操作示意图 在VMware里面创建两台centos7的虚拟机作为搭建云平台的两节点配置如下: 1.第一台虚拟机   作为控制节点 2CPU 3G以上内存 硬盘50G 网络适配器一个nat 一个仅主 ...

  5. 关于input=file的用法

    <input type="file"/>这个东西是用来上传图片用的. 1,但是存在一下问题但是在在各个浏览器下的显示是不一样的 IE下: IE之外的浏览器: 2.如果不 ...

  6. 基于Linux的Samba开源共享解决方案测试(五)

    对于客户端的网络监控如图: 双NAS网关50Mb码率视音频文件的稳定写测试结果如下: 100Mb/s负载性能记录 NAS网关资源占用 稳定写 稳定写 CPU空闲 内存空闲 网卡占用 NAS1 16个稳 ...

  7. ajax控制页面跳转

    一开始我是这么写的,一直报错,跳转路径解析不了,显示为问号: 前台html: <form> <table style="margin: 200px auto;"& ...

  8. PHP写日志公共类

    Txl_Log.php <?php if ( ! defined('BASEPATH')) exit('No direct script access allowed'); /** * * * ...

  9. 安全svn快速安装

    按照如下步骤快速搭建centos6下的svn系统并支持https协议checkout和import代码,亲测成功! 1.[基本包yum安装] yum httpd subversion mod_dav_ ...

  10. 《汇编语言 基于x86处理器》前五章的小程序

    ▶ 书中前五章的几个小程序,基本的运算操作,使用了作者的库 Irvine32 和 Irvine64(一开始以为作者网站过期了,各网站上找到的文件大小都不一样,最后发现是要搭梯子 Orz,顺利下载).注 ...